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    Certain trade names and company products are mentioned in the text or identified in an 
illustration in order to adequately specify the experimental procedure and equipment 
used.  In no case does such an identification imply recommendation or endorsement by 
the National Institute of Standards and Technology, nor does it imply that the products 
are necessarily the best available for the purpose. 
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Abstract 
 

    This report discusses a general approach to reconstructing ground truth intensity 
images of bar codes that have been distorted by LADAR optics.  The first part of this 
report describes the experimental data collection of several bar code images along with 
experimentally obtained estimates of the LADAR beam size and configuration at various 
distances from the source.  Mathematical models of the beam size and configuration were 
developed and were applied through a convolution process to a simulated set of bar code 
images similar to the experiment.  This was done in order to estimate beam spread 
models (beam spread models are unique to each specific LADAR) to be used in a 
deconvolution process to reconstruct the original bar code images from the distorted 
images.  In the convolution process a distorted image in vector form g is associated with 
a ground truth image f and each element of g is computed as a weighted average of 
elements of f that are neighbors to that associated element.  The deconvolution process 
involves a least squares procedure that approximately solves a matrix equation of the 
form Hf = g where H is a large sparse matrix that is made up of elements from the beam 
spread function.  The results of applying the several beam spread models to deconvolving 
the bar code images are given.  Deconvolution of data measured at 10 m was more 
successful than that for 20 m or 40 m.  The appendices include more detailed discussion 
of the least squares algorithm used and sample programs used during the various phases 
of the analysis. 
 
 
Key Words: bar codes, beam spread, deconvolution, image processing, LADAR, object 
recognition, sparse matrix. 
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1.0 Introduction 
 
    Imaging sensors such as LADARs (laser distance and ranging devices) are used to 
rapidly acquire data of a scene to generate three dimensional (3D) models.  The increased 
interest in this technology is due to the substantial growth in applications for real-time 
scene updates driven by the recent advances in imaging sensor software and hardware.  
Current applications include 3D modeling, site surveillance, map/terrain 
update/reconnaissance, bathymetry1, indoor/outdoor visual inspection, autonomous 
control navigation, and collision avoidance. 

 
    Imaging sensors are used to obtain two- or three-dimensional arrays of values such as 
range, intensity, or other characteristics of a scene.  Currently available LADARs can 
gather four pieces of information – range to an object, two spatial angular measurements, 
and the strength of the returned signal (intensity).  Some instruments provide other 
spectral information, such as Red-Green-Blue (RGB) colors.  Various methods are used 
to convert the data, which are collected in the form of point clouds, into meaningful 3D 
models of the actual environment for visualization and scene interpretation.  A point 
cloud is a set of x, y, z points acquired by the LADAR during a scan.  The need for 
accurate representations varies with the purpose of the application.  In the construction 
industry, an accurate representation aids in determining payment for completed work, 
determining if construction errors are being made, and in tracking work progress on a 
project.  In autonomous navigation, an accurate representation would result in crash 
avoidance and successful course navigation.  In military target acquisition, an accurate 
model could mean the difference between hitting or missing a target. 

 
    The data points within the point cloud acquired by a LADAR are indistinguishable 
from each other with regard to their origin; i.e., there is no way to tell if a point is 
reflected from a tree or from a building.  As a result, the methods used to generate the 
models treat all points identically and the results are indistinguishable “humps/bumps”on 
a 3D surface model of a scene.  Current surface generation methods using LADAR data 
require intensive manual intervention to recognize, replace, and/or remove objects within 
a scene.  This is illustrated in Fig. 1.1 where prior knowledge and human intervention 
was required to identify objects in the overlaid sets of data points obtained from several 
scans.  As a result, aids to object identification have been recognized by users as a highly 
desirable feature and a high priority area of research.  
 
    The use of bar codes or UPC (Universal Product Code) symbols has become the 
universal method for the rapid identification of objects ranging from produce to airplane 
parts.  The same method could also be used to identify objects within a construction 
scene.  This would involve using the LADAR to “read” a bar code.  The concept is to use 
the intensity data from the LADAR to distinguish the bar pattern.  The advantage of this 
concept is that no additional hardware or other sensor data is required.  The basis for this 
concept lies in the high intensity values obtained from highly reflective materials.   

 

                                                           
1 Mapping of underwater terrain. 
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Figure 1.1. Plot of the point clouds of data acquired from several scans
of a portion of the grounds on the site of the National Institute of 
Standards and Technology (NIST) in Gaithersburg, Maryland. 
r codes to identify objects on construction sites leads to several challenges:   
termine the appropriate material for the bar codes – the material has to be 
hly reflective and durable. 
d bar code from 100 m or greater.  
- The typical size of a construction site is generally 150 m or greater.  This 

translates into the ability of the instrument to capture sufficient points on 
the bar code for correct identification.  This in turn leads to the physical 
size of the bar codes and a hardware requirement, the scanner’s angular 
resolution.  The two factors, bar code size and scanner resolution, are 
related because a scanner with better resolution would require smaller bar 
codes. 

tinguish bar code points from the other points in a scene. 
d bar codes that are skewed. 

ADAR imaging results from test bar codes showed that at distances beyond 
intensity images were too blurred to be readable and that image processing 
 were potentially necessary to reconstruct the image.  The blurring or 
n of the image is a result of the low resolution (number of pixels/unit area; a 
ce of the instrument’s angular resolution) of the intensity images at longer 
nd of distortion of the intensity image by the LADAR optics and by data 
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processing.  As a result, an investigation of possible methods to de-blur (deconvolve) the 
intensity images was conducted.  Deconvolution of the image involves reversing the 
convolution, implying that if the convolution process was known, the image may be 
reconstructed. 
 
    This report documents an effort to use a specific LADAR to “read” bar codes of a 
highly reflective material and the effort to determine a convolution-based method to 
reconstruct the image.  This latter effort includes developing software to convolve images 
based on the characteristics of the LADAR, simulations to verify the software and the 
reconstruction of the convolved and actual LADAR images.  Section 2 describes the 
process of data acquisition by the LADAR.  Section 3 introduces image blurring 
fundamentals.  Section 4 describes numerical image reconstruction procedures.  Section 5 
discusses computational results.  Section 6 gives references.  Section 7 provides a 
summary plus a brief discussion of future work.  Appendix A introduces a fast matrix-
vector product algorithm.  Appendix B describes the LSQR algorithm of Paige and 
Saunders.  A listing of the software is given in Appendix C. 
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2.0 Data Acquisition 
 
2.1 LADAR Specifications 
 
    A Riegl scanner, Fig. 2.1, was used for all the experiments.  It returns four pieces of 
information – range, two spatial angular measurements and intensity.  The intensity is a 
dimensionless quantity that ranges from 0 (least reflective) to 255 (most reflective) which 
is based on the strength of the return signal. 

 
    The specified accuracy of the LADAR is ±2 cm in range accuracy with a maximum 
range of 150 m.  The field-of-view is 360º in the horizontal direction and 150º in the 
vertical direction.  The LADAR uses a pulsed (17 ns) laser with a wavelength of 903 nm.  
It is mounted on a pan-tilt device whose horizontal and vertical movements are controlled 
by two stepper motors.  The angular resolution, both horizontal and vertical, is 0.045º.  
The manufacturer’s data states that the size of the beam as it exits the LADAR is 42 mm 
(W) by 25 mm (H) and the beam has a 3 mrad divergence. 

 
    Elementary calculations show that the minimum vertical or horizontal distance 
between pixels is approximately 8 mm, 16 mm, and 31 mm for distances of 10 m, 20 m, 
and 40 m, respectively. 

 

 
                                             Figure 2.1.  Laser Scanner. 
 
 
 

 8



2.2 Reflective Material 
 

    In order to “read” the bar code, its existence has to be first established.  To establish its 
existence, the bar code has to have a unique feature or characteristic so that it is easily 
identifiable.  Therefore, the bar code would have to be made of a material that makes it 
easily distinguishable from any background material based on the returned intensity 
value.  A good candidate material would be one that that would return an intensity that 
was both much higher than any other material commonly found at a construction site and 
that was consistently high for distances of 0 m to 150 m, i.e., intensity did not drop off 
with distance.  These requirements are essential as the returned intensity is dependent on 
several factors – reflectance of object, distance to object, reflectance of the surrounding 
objects, lighting (e.g., sunlight, shade), etc.  This dependency means that the intensity of 
a black object at 10 m could be the same as the intensity of a shaded white object at 50 m 
and there would be no way to determine if the object was black or white based solely on 
the intensity value.   

 
    For the initial tests, 3M’s Long Distance Performance (LDP) reflective sheeting was 
used to construct the bar codes.  This material is a highly reflective prismatic lens 
sheeting used for traffic signage.  This material was chosen as it was readily available, 
durable, and would reflect light even if skewed away from the light source. 
 
    The initial experiment was conducted to determine the viability of using the LDP 
material to fabricate the bar codes.  A photograph of the LDP material and several 
magnified images of individual reflective prisms are shown in Figs. 2.2 and 2.3. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.  Photograph of 3M LDP Material. 
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Figure 2.3a:  Magnified Photo of LDP Material:  Width represents 6 mm of surface.

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3b.  Magnified Photo of LDP Material:  Width represents 1.5 mm of surface. 
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2.3 Reflectivity vs Distance Experiment 
 
    The effect on the intensity value as a function of distance was examined by taking 
readings at 10 m intervals from 10 m to 150 m.  Four targets were created using 
aluminum sheets, 508 mm (H) x 406 mm (W) (20 in x 16 in), that were: 1) painted matte 
black; 2) painted matte white; 3) left unpainted (shiny silver); and 4) covered with a sheet 
of LDP material.  In anticipation of the need to read bar codes angled away from the 
scanner, the LDP target was rotated to three positions – 0º, 45º, and 60º (Fig. 2.4). 
 
 
 
 

Target rotation = 45º Target rotation = 60º 

Angle 
of incidence = 
target rotation 

0º 

Scanner ScannerScanner 

 

Laser 
Beam 

 
 
 
 
 
 
 
 
 
 
 
 
 

Top View of Set-up 
 

Figure 2.4.  Rotation Orientation of LDP Target. 
 
 
    At each distance, 10 readings were recorded.  The plot of the average intensity vs. 
distance is shown in Fig. 2.5.  As seen in Fig. 2.5, the intensity values for the LDP target 
at 0º are consistently high – 200 to 250 over the entire range of the scanner – and are 
easily distinguishable from the other targets; thereby making these points easily 
distinguishable from the other points in a typical scene.  As expected, the intensity values 
drop off when the target is turned 45º away from the scanner - the intensity values for the 
LDP target at 45º are very similar to those for the shiny silver target at 0º and one could 
be mistaken for the other.  At an angle of incidence of 60º, the intensity values for a LDP 
target would be indistinguishable from values for the white target.  However, these 
results are encouraging and indicate that the LDP material could potentially be used to 
fabricate bar codes or tags that can be read by a LADAR. 
 
    In Fig. 2.5, the intensity values for the black, white, and LDP at 60º targets increase at 
distances of 140 m and 150 m, which is contrary to expected.  This increase may be 
attributed to the contribution of the white wall behind the target at the longer distances; 
the wall is located about 160 m from the scanner. 
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Figure 2.5.  Intensity vs. Distance. The Black, White and Silver targets were at 0°. 

 
 
2.4 Bar Code Patterns 
 
    Once it was determined that the LDP material produced sufficiently high intensity 
values and could be used to construct the bar codes, the next step was to determine if a 
bar code pattern could be recognized. 
 
 
2.4.1 Recognizing a Simple Bar Pattern at Close Range 
 
    The first test scanned bars of varying widths, set at a fixed spacing between bars of 
76.2 mm (3 in) and a distance to the target of approximately 8.7 m (28.5 ft).  Three LDP 
bars were attached to a wooden board:  292.1 mm (H) x 152.4 mm (W) ( 11.5 in x 6 in), 
292.1 mm x 76.2 mm (11.5 in x 3 in), and 292.1 mm x 38.1 mm ( 11.5 in x 1.5 in).  Fig. 
2.6a shows a photo of the bars and Fig. 2.6b shows a plot of the intensity values.  As seen 
in Fig. 2.6b, the bar pattern is easily recognizable. 

 
 

 12



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6a:  Digital photograph of macro barcode test pattern. 
Note that the “glare” from the bars is due to the highly reflective material of the bars. 

 

Figure 2.6b:  2-D plot of LADAR intensity at 8.7 m (28.5 ft). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
2.4.2 Distinguishing Bar Patterns at Varying Distances 
 
    The next step was to test the ability to distinguish bar patterns at various distances.  
The objective was to determine the minimum size bar and the minimum spacing between 
bars required to distinguish the bar patterns at various distances.  A series of test scenes 
were developed for various patterns and scanned at several distances. 
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    LDP bars were attached to a white poster board 762 mm (H) x 609.6 mm (W) (30 in x 
24 in).  Three target boards were used.  Each board contained nine bars of the same size–  
Board 1:  152 mm (H) x 102 mm (W) (6 in x 4 in) bars; Board 2:  152 mm x 51 mm (6 in 
x 2 in) bars; Board 3:  152 mm x 25 mm (6 in x 1 in) bars.  The arrangement of the bars 
on each board was as follows: 

 
• 3 rows of bars with 76.2 mm (3 in) spacing between the rows 
• top row:  3 bars spaced at 76.2 mm (3 in) 
• middle row:  3 bars spaced at 50.8 mm (2 in) 
• bottom row:  3 bars spaced at 25.4 mm (1 in) 

  
    The original intent was to test the bar patterns at distances of 20 m, 40 m, 60 m, 80 m, 
and 100 m (65.6 ft, 131.2 ft, 196.9 ft, 262.5 ft, and 328.1 ft).  The images obtained at 60 
m (196.9 ft) (Fig. 2.7) showed that the LDP bars were not distinguishable at that distance.  
Therefore, scans were taken at shorter distances of 5 m, 10 m, 15 m, 20 m, 40 m and 60 
m (16.4 ft, 32.8 ft, 49.2 ft, 65.6 ft, 131.2 ft, and 196.9 ft). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  a.  Intensity Image    b.  Intensity Plot 
 

Figure 2.7.  Scan of the 152.4 mm x 102 mm (6 in x 4 in) bars at 60 m (196.9 ft). 
Note:  Middle row of bars were covered up to get better separation between the top 

and bottom rows of bars. 
 
 
    Three scans were obtained for each board at each distance.  Some results are shown in 
Figs. 2.8, 2.9 and 2.10.  In each of these figures, the (a) figure is a digital photo of the test 
board; figures (b), (c), and (d) represent the LADAR intensity image on a scale of 0 to 
255 for various test ranges; figures (e), (f), and (g) are plots of the intensity values.  In the 
intensity images and plots, the blurring at the bar edges is likely caused by an averaging 
of the intensity values when the laser beam is split between the bar and the background.   
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(e)  10 m  (f)  20 m  (g)  40 m  

(a)  Photo 
(b)  10 m (c)  20 m (d)  40 m 

Figure 2.8.   152.4 mm x 25.4 mm (6 in x 1 in) bars at varying distances.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  20 m (d)  40 m (b)  10 m (a)  Photo 

(e)  10 m  (f)  20 m  (g)  40 m  

Figure 2.9:  152.4 mm x 50.8 mm (6 in x 2 in) bars at varying distances. 
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(c)  20 m (b)  10 m (a)  Photo (d)  40 m 

(g)  40 m  (f)  20 m  (e)  10 m  

 Figure 2.10:  152.4 mm x 101.6 mm (6 in x 4 in) bars at varying distances. 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 2.11: Raw data acquired by the LADAR for 50.8 mm (2 in.) bar codes at
40 m. Note the need to isolate the bar code images at the far right from the large
amount of background data acquired during the scan.
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    In a scan, the number of points acquired can vary from several thousand to several 
million points.  The number of data points is dependent on the desired field-of-view and 
desired angular resolution.  Thus, the number of points returned from bar codes would be 
a very small percentage (< 1%) of the total number of points in a typical scene.  The data 
from one of the bar pattern experiments are shown in Fig. 2.11.  The scan included the 
target board and a small region around the board.  As seen in Fig. 2.11, the bar code 
points can easily be segmented or filtered out from the other background points due to the 
high intensity values (> 200) of the bar codes. A histogram of the intensity values, shown 
in Fig. 2.12, clearly shows the data segmentation.  By filtering the data for points with 
intensities greater than 200, a cropped data set of the bar code pattern may be obtained as 
shown in figures (e), (f), and (g) for each of Figs. 2.8, 2.9, and 2.10.  This method of was 
applied to all the data sets.  Fig. 2.12 is a histogram of a typical raw data set. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
                                                    Figure 2.12.  Histogram of Raw Data Set. 
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2.4.3  MATLAB Bar Code Identification Procedure 
 
    The MATLAB script given in Appendix C.1 employs a simple method to segment the 
LADAR data into background and bar data.  A histogram technique is used.  The 
returned intensity signals are binned into 100 intervals.  The sample histogram shown in 
Fig. 2.12 displays the counts of intensities that fall within the intervals. There are two 
dominant modes in the distribution.  The lower mode represents the large amount of 
background intensity shown in Fig. 2.11, whereas the higher mode represents the bar 
code intensities. 
 
    The script assumes the data file generated by the LADAR is in text mode with a file 
extension “.txt” and that there are leading header lines that begin with “#”.  
 
    The use of a histogram as a filter of the intensity response offers a significant tool to 
isolate the intensity response from the background.  The current algorithm filters out all 
intensity data less than 200.  Further exploration of this idea will have to be based on 
more experimental data. 
 
 
2.4.4 Bar Code Measurement Results 
 
    Two observations about the three dimensional meshing technique of the intensity data 
used in this paper can be made.  First, the figures show that at distances of 10 m and 20 m 
it is possible to isolate reflector bars distanced 76.2 mm (3 in) and 50.8 mm (2 in) apart.  
At a separation of 25.4 mm (1 in) discrimination is problematical.  A rough estimate of 
the separation required at 150 m (492.1 ft) for the current technology would then be 381 
mm (15 in).  This is based on an extrapolation of 50.8 mm (2 in) at 20 m.  A further 
enhancement in technology is clearly required in order to reduce this interval. 
 
    The second observation is that using a histogram as a filter of the intensity response 
offers a significant tool to isolate the intensity response of the bar codes from the 
background.  The utility of this tool is highly dependent on having a material with a 
unique intensity level.  This unique intensity allows for easy data segmentation. 
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2.5 Beam Property Measurements 
 
    In image processing, the adequacy of the process of reconstructing an image is 
enhanced by understanding the entire imaging process and knowing how that process 
distorts the intensity measurements.  Due to the proprietary nature of the particular device 
used for the experiments, a complete knowledge of the optics of the LADAR was nearly 
impossible.  However, one way to estimate the dispersion of the LADAR beam and its 
response from an object was to measure it experimentally.  In classic optics the distortion 
effects of an instrument can often be modeled based on measurements of bright points of 
light that simulate, as close as possible, a delta function.  This process in classic optics is 
passive in the sense that the optics of the device simply measures the intensity of an 
external source.  For LADARs, however, the process is more dynamic in the sense that 
the LADAR emits a beam that is reflected from an object and then the LADAR picks up 
the reflected beam.  Thus, in the case of a LADAR there is a beam emitted, whose nature 
may or may not be known, there is the reflection from an object and finally there is the 
LADAR processing of the reflected beam.  This indicates that the LADAR imaging 
process is a much more complex process than that of classic optics.  For that reason this 
section describes the measurements made of a LADAR beam and the imaging of small 
round reflectors as an attempt to create delta functions which simulate light pulses 
reflected off of a point source.  This was used to model the image distortion due LADAR 
optics. 
 
2.5.1 Beam Size and Divergence Characteristics 
 
    The data for determining the beam size as a function of distance was obtained as part 
of an experiment to determine the range accuracy of the LADAR as a function of the 
angle of incidence of the laser beam and distance.  An infrared viewer was used to see the 
projection of the LADAR on the target so that an outline of the beam could be drawn.  
Outlines of the beam were drawn by two or more observers and the measurements were 
averaged.  The procedure of locating the beam and measuring the dimensions is detailed 
in another NIST report [1].  Beam dimensions were obtained for distances ranging from 
2 m to 100 m and are shown in Table 2.1. 

 
    The LADAR used for this report consisted of three laser diodes and the projection of 
the laser beam on the target was seen as a bright rectangle for distances less than 10 m 
and three bright vertical bands separated by dark bands for distances greater than 10 m.  
The widths of the bright bands are denoted by “a”, “c”, and “e” and the widths of the dark 
bands are denoted by “b” and “d” in Table 2.1. At 10 m, one observer saw bands but the 
others perceived only a rectangle. 
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Table 2.1:  Beam Size. 
 

Distance 
(m) 

L†

(mm) 
W†

(mm) 
a† 

(mm) 
b†

(mm) 
c†

(mm) 
d†

(mm) 
e†

(mm) 
2 17 41 na na na na na 
2 15 45.5 na na na na na 
2 15 47 na na na na na 
2 17 40 na na na na na 
2 14 41 na na na na na 
5 19 42 na na na na na 
5 25 46 na na na na na 
5 18 36 na na na na na 
5 19 41 na na na na na 

102 31.5 49 15 2 10.5 1.5 20 
10 27 51 na na na na na 
10 28 48 na na na na na 
10 22 46 na na na na na 
10 29 58 na na na na na 
10 24 53 na na na na na 
10 31 62 na na na na na 
20 60 68 19.5 8 16 10 14 
20 53.5 68 9.5 16.5 14 14 14 
20 55 56 9 15 14 11 8 
30 86 79 7 21.5 11 29 10 
30 79 87 9.5 24.5 15 34.5 3.5 
30 74.5 86 16 18 16.5 23.5 12 

39.5 117.5 116 11.5 37.5 14.5 37 15.5 
39.5 96 111.5 14 35.5 13 29 20 
40 115 117 17 26 20.5 31 22 
40 101 105 13 24 24 30 14 
50 136 159 39 32.5 14 54 19 
50 127 146.5 12.5 47 22 43.5 22 
60 158 166.5 21 48 23 57 17 
60 161 166 24.5 53 18 47 22.5 
70 180 194 20 68 25.5 62.5 18 
70 166 187 16 71 18 66 16 
80 176 183 14 78 18 59 14.5 
80 166 207 20.5 53.5 27 84 22.5 
80 172 213 19.5 97 17 57.5 22.5 
90 186 260 26 115.5 25 72 21 
90 254 248 22.5 73 54 61 38 
90 230 230 26.5 65 44.5 64.5 29.5 
100 182.5 274 25 101 34 84 30 
100 234 266 17 120 14.5 101 12.5 
100 246.5 263.5 15 99.5 14 122 14 
100 284 288.5 21 107.5 24.5 110.5 25 

                                                           
2 Although the other observers saw a single rectangular bright spot, this observer was able to 
distinguish bright and dark bands within the rectangular spot. 
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Distance 
(m) 

L†

(mm) 
W†

(mm) 
a† 

(mm) 
b†

(mm) 
c†

(mm) 
d†

(mm) 
e†

(mm) 
Notes: 
 
†  Description of Variables.  “a”, “c”, and “e” are the widths of the bright bands and “b” and “d” are the widths 
of the dark bands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

edba c
W

L 

 
 

 
    The lengths and widths of the beam projection are plotted as a function of the distance 
in Fig. 2.13.  Given the subjectivity when obtaining the beam dimensions, a clear trend is, 
nevertheless, visible in Fig. 2.13.  The regression fits for width and length are: 
 
 

smillimeterindimensionlengthwidth,             
  100       metersindistance       5              

where
9606.0959.6528.20025.0               

9874.0815.34664.1007.0              
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Figure 2.13:  Beam Size vs. Distance. 
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    Based on the measured beam dimensions, divergences of the beam in the width 
(horizontal) and length (vertical) directions were calculated.  Since there were no 
measurements of the beam size as the beam exits the LADAR, the beam size at 2 m was 
taken as the reference or initial beam size when calculating the divergence.  The 
divergence was calculated using the following formulas (tan γ = γ for small angles): 
 
 

( ) (2) ( ) 15.55( ) 1000
( 2) 1000 ( 2) 1000

( ) (2) ( ) 43( ) 1000
( 2) 1000 ( 2) 1000

where
                 ( ), ( )

vertical

horizontal

vertical horizontal

L x L L xx
x x

W x W W xx
x x

x x

γ

γ

γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟− ⋅ − ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟− ⋅ − ⋅⎝ ⎠ ⎝ ⎠⎣ ⎦

divergence at distance  in milliradians
               ( )  Average length of beam at distance  in millimeters
               ( )  Average width of beam at distance  in millimeters
              

x
L x x
W x x

=

=
=

   Distance in metersx =

 

 

 
Figure 2.14.  Beam Divergence. 

 
    The average vertical beam divergence is 2.14 mrad (σ = 0.39 mrad) and the average 
horizontal beam divergence, excluding the outlier (negative divergence) is 1.86 mrad (σ = 

 22



0.44 mrad).  The average beam divergence (horizontal and vertical combined) is 
2.01 mrad (σ = 0.43 mrad) - compared with the manufacturer’s specified divergence of 
3 mrad.  The lower experimental value is likely a result of the inability of the unaided 
human eye to detect the faint edges of the laser beam projection.  A plot of the beam 
divergence is shown in Fig. 2.14. 
 
    Plots of the bandwidths of the bright and dark bands are shown in Figs. 2.15 and 2.16.  
In Fig. 2.15, the bandwidths for the each individual band are plotted and a trend is visible 
for the bright and dark bands.  The linear regression fits for individual bandwidths are 
given in Table 2.2. 
 
 

Table 2.2:  Coefficients for Linear Regression for Individual Bandwidths. 
 

Description Bandwidth† 

(mm) 
Slope (M)† Intercept (B)† R2 ‡

Bright Bands 
         Left a§ 0.1123 11.198 0.2283 
         Middle c§ 0.1842 9.8815 0.2938 
         Right e§ 0.1315 10.643 0.2864 
Dark Bands 
         Left b§ 1.1426 -13.251 0.8954 
         Right d§ 0.9815 -6.0425 0.8702 
Notes: 
 
†  Bandwidth = Mx + B where x = distance in meters;  5 < x < 100 
‡  Correlation coefficient squared 
§  Corresponds to band widths shown in Notes section of Table 2.1. 

 
 
 

Figure 2.15.  Individual Band Widths vs Distance. 
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Fig. 2.16 is a plot with the same data shown in to Fig. 2.15.  However, in Fig. 2.16, the 
data for the three bright bands were combined and plotted as ‘bright band’ and the data 
for the two dark bands were combined and plotted as ‘dark band’.  The regression lines 
for the bright and dark bandwidths are: 
 

smillimeter in bandwidth                
100         10   meters; in distance x                 

where
257805741014260  bandwidthht       Brig          

87840646890621    bandwidth       Dark          
2

2

<<=

=+=

=−=

x

Rx

Rx

...

...

  (2.3) 

 
 

 
Figure 2.16.  Combined Bright and Dark Band Widths vs. Distance. 

 
 
 

2.5.2 Spread Function Measurements by Spot Reflection 
 

    In order to estimate what the beam spread response might look like, a small point of 
light had to be simulated.  This was done by cutting two sets of circles of the 3M reflector 
sheet and placing them on a black background.  Two diameters of circles were cut, the 
first being 6.3 mm (1/4 in) and the second 12.7 mm (1/2 in).  Three columns of each set 

 24



of “dots” were placed on two black metallic backgrounds.  The dots were placed about 
304.8 mm  (12 in) vertically apart with the first and third colums aligned horizontally and 
the middle column  starting 152.4 mm (6 in) below the start of the first and the third.  
This gave the effect of dots alternating by column every 152.4 mm (6 in). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.17: LADAR images  at 10 m of 6.3 mm (1/4 in) spots in the left three columns and 

12.7 mm (1/2 in) spots in the right columns.
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    One characterstic to notice of the spots in Fig. 2.17 is that there is a definite horizontal 
broadening of the spot images as opposed to a vertical broadening. In fact there is 
roughly a 2 to 1 aspect ratio of horizontal to vertical spread in the spot data. This aspect 
ratio is also evident at 20 m (Fig. 2.18).  At 40 m the spots flowed together and they 
could not be distinguished (Fig. 2.19). 
 
 
2.5.3 Summary of Beam Property Measurements 
 
    Being able to reconstruct a ground truth image from a distorted image depends 
strongly on knowledge of the optical processes involved. As opposed to photography, 
which is a passive process, in that it gathers light that is reflected from an object, a 
LADAR is active in that it projects a beam at a target object and then gathers in the 
reflected photons. Therefore, to understand a LADAR’s image, one needs to have 
knowledge of the beam emitted by the LADAR as well as how the LADAR optics 
distorts the photon beam reflected from each point of the target image. 
 
    The LADAR used in this study produced a beam of photons that split into three light 
bands with two dark bands between.The beam size grew nearly linearly to about 250 mm 
in length and width at 100 m distant. The predominant growth in the beam size was 
accounted for by the near linear growth in the dark bands, whereas the light band widths 
remained nearly constant in size. 
 
    The distortion affect of a camera’s optics on light reflected from an image is usually 
measured by taking a picture of a small bright spot on a black background. In the case of 
the LADAR a bright spot was simulated by a small spot of highly reflective material 
against a black background. The measurements for the given LADAR showed that the 
distortion need not be uniform in all directions. In fact, for the LADAR used, the 
distortion tended to spread the image horizontally more than vertically (Fig. 2.17, 2.18) 
and at 40 m the reflections from the spots were so distorted that no spots in the image 
could be identified (Fig. 2.19). 
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Figure 2.18. LADAR images  at 20 m of 6.3 mm (1/4 in) spots in the
left three columns and 12.7 mm (1/2 in) spots in the right columns. 
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Figure 2.19. LADAR images at 40 m of 6.3 mm (1/4 in) spots in 
the left three columns and 12.7 mm (1/2 in) spots in the right. 
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3.0 Image Blurring Fundamentals 
 
    Image processing methods have been successful when applied to blurred photographic 
images.  They have also been successful in medical imaging.  The intent of the current 
study was to determine to what extent image processing techniques, applied to LADAR 
image reconstruction problems, would be successful. 
 
    For the purpose of modeling, the LADAR beam is assumed made up of a stream of 
photons. The beam is aimed at a target point on the ground truth image.  The value that 
the LADAR assigns to that point is the result of an averaging process of the reflections of 
the LADAR beam from points in a neighborhood of the target point as shown in Fig. 3.1.  
This averaging process can be given a mathematical description beginning with a 
discussion of a light pulse. 
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Figure 3.1. A schematic showing how an image point is assigned as a 
result of the blurring process that occurs after a LADAR beam is 
reflected. 
ight minute source of light in a dark background is essentially a highly localized, 
ensional, spatial pulse, representing a spike of irradiance.  A convenient idealized 

ntation of this sort of sharply peaked stimulus is the Dirac delta function, δ(y).  
 a quantity that is zero everywhere except at the origin, where it goes to infinity in 
er so as to encompass a unit area,  that is  

0 0
( )

0
y

y
y

δ
≠⎧

= ⎨∞ =⎩
     (3.1) 

( ) 1.y dyδ
∞

−∞

=∫     (3.2) 
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The basic operation of the delta function is called the sifting property and is given by 
 

( ) ( ) (0).f y y dy fδ
∞

−∞

=∫     (3.3) 

 
That is the delta function extracts the one value of  f(x) at x = 0.  With a shift of the origin 
we have 
 

0
0

0

0
( )

y y
y y

y y
δ

≠⎧
− = ⎨∞ =⎩

    (3.4) 

 
and 
 

0( ) ( ) ( ).0f y y y dy f yδ
∞

−∞

− =∫     (3.5) 

 
In two dimensions one has 
 

0 0 0( , ) ( ) ( ) ( , ).0f y z y y z z dxdy f y zδ δ
∞ ∞

−∞ −∞

− − =∫ ∫     (3.6) 

 
    The LADAR can be thought of as an optical system that takes reflected data from 
points on a plane, sometimes called a target plane, that are described by coordinates 
( , )y z  where the positive y coordinate axis points to the right and the positive z 
coordinate axis points downward.  The x coordinate is always assumed to point in the 
direction of the target. This axis configuration preserves the right-hand rule.  The 
LADAR then produces an image, often blurred in some manner, on a plane, usually 
called the object plane, defined by coordinates ( ,  that are set in a one-to-one 
mapping with the ( ,

)Y Z
)y z  coordinates in the target plane. 

 
    Without knowing the physical and optical processes associated with the production of 
a LADAR image, a preliminary assumption to make is that it is a linear process.  This can 
be defined as follows.  Suppose that an input signal f(y,z) passes through some optical 
system and results in an output g(Y,Z). The system is linear if 
 
1. the input af(y,z) produces the output ag(Y,Z) and 
2. given that input  produces  and  produces  then 

 produces 
),(1 zyf ),(1 ZYg ),(2 zyf ),(2 ZYg

),(),( 21 zybfzyaf + ),(),( 21 ZYbgZYag +  
 
where a and b are any scalars.   
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    A linear system will be space invariant if changing the position of the input from the 
target plane merely changes the location of the output  in the object plane without altering 
its functional form.  Thus the output produced by an optical system can be treated as a 
linear superposition of the outputs arising from each of the individual points on the target 
object.  The impulse response will be designated by ( , )H Y y Z z− − . Our model of 
LADAR imaging can then be written as 
 

( , ) ( , ) ( , ) .g Y Z f y z H Y y Z z dydz
∞ ∞

−∞ −∞

= − −∫ ∫    (3.7) 

 
    The restoration problem involves estimating the function f(y,z) given a measured 
g(Y,Z).  Finally there is also typically random noise degradation.  In the presence of 
additive noise degradation the convolution restoration model can be written as 
 

( , ) ( , ) ( , ) ( , )g Y Z f y z H Y y Z z dydz n Y Z
∞ ∞

−∞ −∞

= − − +∫ ∫    (3.8) 

 
    Equation (3.8) is a special case of a class of ill-posed problems. In order to explain the 
ill-posedness of the general superposition equation 
 

( , ) ( , ) ( , ; , )g Y Z f y z H y z Y Z dydz
∞ ∞

−∞ −∞

= ∫ ∫    (3.9) 

 
we consider two problems.  The first shows that the same blurred image can be produced 
even though the ground truth image is perturbed by high frequency noise.  The second 
shows that small noise perturbations of the blurred image can result from large 
perturbations of the ground truth image. 
 
    First consider the following one-dimensional problem.  Let f(s) = 0 for [-a,a] and 
then 

∉s

 

( ) ( ) ( , ) ( ) ( , )
a

a

g y f s H s y ds f s H s y ds
∞

−∞ −

= =∫ ∫    (3.10) 

 
The Riemann-Lebesgue Theorem states that 
 

lim sin( ) ( , ) 0
a

a

s H s y ds
ω

ω
→∞

−

=∫ .   (3.11) 

Then 
 

( ) lim [ ( ) sin( )] ( , ) .
a

a

g y f s s H s y ds
ω

ω
→∞

−

= +∫    (3.12) 
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The restoration problem can be stated as given g(y) and H(s, y) determine f(s).  However, 
since a high-frequency sinusoid can be added to f(s) and produce data very close to g(y), 
a unique solution cannot in general be expected.  Other techniques have to employed. 
 
    For the second problem  we begin by defining 
 

1 1/
( ) .

0 otherwise
y

k y
⎧ ≤

= ⎨
⎩

2
      (3.13) 

 
Then define 
 

( ) ( )n y nk nyδ =     (3.14) 
 
and note that 
 

( ) 1.n y dyδ
∞

−∞

=∫    (3.15) 

 
Let ( )H y  be a bounded continuous function defined on the real line.  Then for any 
integer n > 0 we can use the Mean Value Theorem for integrals to show 
 

1/(2 ) 1/(2 )

1/(2 ) 1/(2 )

( ) ( ) ( ) ( ) ( )
n Y n

n
n Y n

y H Y y dy n H Y y dy n H u du Hδ ξ
+∞

−∞ − −

− = − = =∫ ∫ ∫    (3.16) 

 
for some , 1/(2 ) 1/(2Y n Y ).nξ ξ− < < +  Now let 
 

( ) ( ) ( ) .g Y f y H Y y dx
∞

−∞

= −∫    (3.17) 

 
Then 
 

{ }( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

n nf y y H Y y dy f y H Y y dy y H Y y dy

g Y H

εδ εδ

ε ξ

∞ ∞ ∞

−∞ −∞ −∞

+ − = − + −

= +

∫ ∫ ∫    (3.18)\ 

 
for some , 1/(2 ) 1/(2Y n Y ).nξ ξ− < < +   For small ε  the right hand side of (3.18) is a 
small perturbation of the blurred image ( )g Y  since H(y) is bounded. But the perturbation 
of f(y) can be made arbitrarily large by selecting a sufficiently large n.  
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    Both of these examples show how ill conditioned the image reconstruction problem 
can become.  For this reason care must be taken when developing an image 
reconstruction algorithm. 
 
    Before an algorithm can be described we need to discretize the associated integrals.  In 
general Equation (3.7) is never directly evaluated since the intensity values ( , )f y z are 
possibly known only at discrete points.  To discretize the ground truth or target image 
define nf discrete values on the y-axis directed to the right and nf equally spaced discrete 
values on the z directed vertically downward so that 
 

1 2

1 2

1 1

0 1

0 1

, ,
.

nf

nf

i i i i i i

i i

y y y

z z z

y y y z z z
y z

+ +

= < < < =

= < < < =

∆ = − ∆ = −
∆ = ∆ = ∆

,

,

j

   (3.19) 

 
    The unit size is set to one in order to represent a one meter square background to the 
bar codes used in the experiments.  The intensity at the patch identified by the 
coordinates ( ,  )i jy z  is modeled as  
  

* *( , )i j if y z y z∆ ∆    (3.20) 
 

where f is a function expressing the intensity response at some point in the patch.  Due to 
distortions, the LADAR image of the response from the bar code surface is smeared out 
into some form of blurred spot.
 
    The grid for the distorted image is taken as a subset (to be defined below) of the grid 
for the ground truth image for the purpose of discretization; see Fig. 3.2.  Points in the 
distorted image will be identified by (Y, Z) and those in the ground truth image by (y, z).  
These are simply different notations for points in the same axis system. 
  
    The distortion at a point (Y, Z) in the object plane, due to a point (y,z) in the target 
plane, is described by the function ( , ; , )H y z Y Z , called here the Beam Spread Function, 
although in standard image processing it would be called a point spread function.  For 
most practical purposes the Beam Spread Function can be considered spatially invariant 
in the sense that its distortion value only depends on the distance between (Y, Z) and (y, z) 
so that H has the form H(Y-y, Z-z) as given in Equation (3.7).  The incremental distortion 
effect at (Y, Z) due to a neighboring patch of (y,z) is  then  
 

( , ) ( , ) ( , ) .g Y Z f y z H Y y Z z y z∆ = − − ∆ ∆    (3.21) 
 
    To describe the total effect g(Y, Z) of all of the points (y, z) in the ground truth image 
one sums over all of the patches  in the ground truth image 
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1 1
* * * *

1 1
( , ) ( , ) ( , ) .

nf nf

i j i j i j
i j

g Y Z f y z H Y y Z z y z
− −

= =

= − −∑∑ ∆ ∆    (3.22) 

 
This is the discrete form of Equation (3.7), because as the number of grid points nf in the 
ground truth image grows and the patch size tends to 0, the sum can be replaced by the 
integral (3.7).  This integral is called a convolution integral. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.
and the 
between. 
 
 

 

Ground Truth Image

Distorted Image

(Y,Z)

(y,z)

g(Y, Z)

f(y, z)

H(Y-y, Z-z)

 

2. This shows the relation of the distorted image to the ground truth image 
fact that the Beam Spread Function only depends on relative distances 
points. 
34



 

4.0 Numerical Image Reconstruction Procedures 
 
 
     In order to be in a form suitable for computer processing, an image function f(y, z) 
must be digitized both spatially and in amplitude.  Digitization of the spatial coordinates 
(y, z) will be referred to as image sampling, while amplitude digitization will be called 
gray-level quantization. 
 
    Suppose that a continuous image f(y, z) is approximated by equally-spaced samples 
arranged in the form of an nf x nf array as shown by 
 

(1,1) (1, 2) (1, )
(2,1) (2, 2) (2, )

( , )

( ,1) ( , 2) ( , )

f f f nf
f f f

f y z
nf

f nf f nf f nf nf

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (4.1) 

 
where each element of the array is a discrete quantity.  The right side of this equation 
represents what is commonly called a digital image, while each element of the array is 
referred to as an image element, picture element, pixel, or pel. 
 
    The digitization process requires that a decision be made on a value for nf as well as on 
the number of discrete gray levels allowed for each pixel. It is assumed here that m 
discrete levels are equally spaced between 0 and 255. The resolution (i.e. the degree of 
discernable detail) of an image is strongly dependent on both nf and m. The more these 
parameters are increased, the closer the digitized array will approximate the original 
image. But computer storage and processing requirements increase rapidly as a function 
of nf and m. When an image of lower resolution, such as 16 x 16, is displayed at a higher 
resolution, of say 512 x 512, pixels are each duplicated leading to a display that has a 
checkerboard-like effect in the graphics display. 
 
    Assume that the ground truth image  is given as a matrix ( , )i jf y z ( , )f i j  of size nf x 
nf at points  
 

1 2

1 2

0 1

0 1
nf

nf

y y y

z z z

= < < < =

= < < < =

,
    (4.2) 

 
and the beam spread function is given as a matrix H(m,n) of size ma x ma, ma < nf, where 
m= 1, …, ma, n= 1, …, ma, with H(1, 1) the upper left corner and H(ma, ma) the lower 
right.  H has the same grid size as f.   
 
    The convolution is a process in which beam spread function, as a matrix of weights, is 
sequentially moved across the ground truth matrix.  A weighted average of the ground 
truth points under the beam spread matrix is computed and the averaged value is assigned 
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to a point under the center of the beam matrix.  The distorted image is a function g(Yp, Zq) 
represented by a matrix g(p,q) of size ng x ng where nf and ng are related by nf = ng + ma 
– 1; see Fig. 4.1. Note that ma must be taken as an odd integer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nf

ng

ma
(ma-1)/2

X
nf

nf

ng

ma
(ma-1)/2

X
nf

 
Figure 4.1. This shows the relationship of the Ground Truth image of size nf x nf to the 
distorted image of size ng x ng, where nf = ng + ma – 1, where the discrete model of the 
LADAR beam has size ma x ma. The point X represents the pixel in the distorted image at 
which the convolution of the beam with the Ground Truth is assigned. 

 
    The spatial coordinates for the distorted image are defined as follows.  Let p, q = 1, …, 
ng then set  
 

( 1)

( 1)
p

q

Y p

Z q

,

.

= − ∆

= − ∆
          (4.3) 

 
Similarly, the spatial coordinates of the ground truth image are defined as follows.  Let i, 
j = 1, …, nf then set  
 

( 1) ,
( 1)

i

j

y i
z j .
= − ∆
= − ∆

           (4.4) 

 
Now we can define the indexed array for the beam spread function in terms of special 
coordinates. Although H will be used to designate an indexed array, it will also be used as 
the related function of coordinates. For m, n = 1, …, ma let 
 
 

 36



( , ) ( , )L m nH m n H u w=          (4.5) 
 
where  designates the value of the matrix H at the local coordinates  LH
 

((2 1) / 2) ,
((2 1) / 2) .

m

n

u m ma
w n ma

= − −
= − − ∆

∆

.∆

2,
2.

             (4.6) 

 
 um   and wn are local coordinates of H relative to the center of the beam spread function.  
For example, 
 

(1,1) (( ( 1) / 2) , ( ( 1) / 2) ),
(( 1) / 2, ( 1) / 2) (0,0),
( , ) ((( 1) / 2) , (( 1) / 2) )

L

L

L

H H ma ma
H ma ma H
H ma ma H ma ma

= − − ∆ − − ∆
+ + =

= − ∆ −
  (4.7) 

 
A point (Yp, Zq) in the distorted image is linked to a point (yi, zj) by 
 

( 1) /
( 1) /

i p ma
j q ma
= + −
= + −

     (4.8) 

For example, 
 

( 1) / 2 ( ( 1) / 2 1) .p i p maY y y p ma+ −= = = + − − ∆     (4.9) 
 
Therefore, given any p, i, q, j,  
 

( ( 1) / 2)

( ( 1) / 2
p i

q j

Y y p i ma

Z z q j ma

− = − + − ∆

− = − + − ∆

,

) .
    (4.10) 

 
    Since H(u,w) is nonzero for (u,w) in [-((ma-1)/2)∆, ((ma-1)/2)∆ ] x [-((ma-1)/2) ∆, 
((ma-1)/2)∆ ] and 0 elsewhere, the discrete convolution integral becomes 
 

1 1

( , ) ( , ) ( , ). (4.11)
q ma p ma

p q p i q j i j
j q i p

g Y Z H Y y Z z f y z
+ − + −

= =

= − −∑ ∑
 
Summation is first taken down y then z. The ∆  factor has been subsumed into the 
definition of H for computational ease.  Note that, if the beam spread matrix is sitting 
with its center at (Yp, Zq), the upper left point is sitting at (yp, zq).  At point (Yp, Zq) of the 
distorted image, the sum looks like 
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( , ) ( , ) ( , ) ( 1, ) ( 1, ) (1, ) ( 1, )
( , 1) ( , 1) (1, 1) ( 1, 1) (4.12)

(1,1) ( 1, 1).

g p q H ma ma f p q H ma ma f p q H ma f p ma q
H ma ma f p q H ma f p ma ma

H f p ma q ma

= + − + + + +
+ − + + + − + − −
+ + + − + −

−

 
 
Since the ground truth image F is larger than the distorted image G, there are more 
degrees-of-freedom involved in reconstructing F from a measured G. A computable 
approach is to determine F in a least squares manner to satisfy 
 

2min . (4.13)
F

HF G−

 
This is an ill-posed problem since there can be multiple solutions. A penalty term can be 
added to this minimization problem that puts a premium on the size of F selected. 
Introduce λ  > 0 and form the following minimization problem 
 

{ }2 2min . (4.14)
F

HF G Fλ− +

 
The second term is called a regularization term and its function is to control the 
magnitude of the final F. In practice λ  is selected as a small positive number. 
 
    At this point we discuss an iterative least squares algorithm by Paige and Saunders [8] 
called LSQR. Although this has been discussed in [7] many of the details involved with 
the implementation in code may not be familiar to some readers of the current report. 
Therefore the details are included in APPENDIX B. Only the general outline will be 
given here. A Fortran 77 code is available in zip compressed form on the web as ACM 
Algorithm 583 from http://www.acm.org/calgo/contents/.  
 
    One begins with a fundamental result from Golub and Kahan [5]. Let H be any m x n 
matrix with real elements. The original result allowed complex elements but only real 
values will be used here. The matrix H can be decomposed as 
 

TH U B V=              (4.15) 
 
where U and V  are orthogonal matrices and the first column of U is arbitrary. That is, 

 B is a bidiagonal matrix of the form ., IVVVVIUUUU TTTT ====
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Using the orthogonality property of U and V it is clear that 
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          (4.18) 

    The previous decompositions will become useful in the solution of the following least 
squares problem 
 

2min .
f

Hf g−             (4.19) 

 
If orthogonal matrices U and V are found that satisfy the above conditions then this least 
squares problem can be reduced to a simpler form. By orthogonality we always have 

zUz T=  so that 
 

( )T T T T .T        (4.20) Hf g UBV f g U UBV f g BV f U g− = − = − = −

 
Let the columns of U be denoted by 
 

[ ]1 2, , , mU u u u= .             (4.21) 
 

Since the first column of U is arbitray, we can set  
 

1 .gu
g

=          (4.22) 
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Then since U is orthogonal 
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          (4.23) 

 
where, for notation,  is the vector of all zeroes with one in the kke th element and 

1 gβ = . With this notation one has 
 

1 1Hf g By eβ− = −           (4.24) 
 
where . Thus the previous least squares problem can be reduced to the new 
minimization problem 

Ty V f=

 
11min eBy

y
β− .         (4.25) 

 
    The regularization term can be introduced by solving the minimization problem 
 

1 1min
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I
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    The algorithm of Paige and Saunders [7] proceeds iteratively so that after k+1 steps 
one has generated 
 

[ ]
[ ]

1

1 1 2 1

1 1 2 1

1

2 2

3 3

1

,

, , , ,

, , , ,

.

k k

k k

k

k

k

g

U u u u

V v v v

B

β

α
β α

β α

α
β

+ +

+ +

+

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

           (4.27) 

 

 40



The kth approximation to the solution f is defined by k k kf V y= where  solves the kky th 
iteration problem 
 

1 1min .
0k

k
ky

B e
y

I
β

λ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

            (4.28) 

If we define the following residuals 
 

1 1k

k k

t e B
r g Hf

k kyβ+ = −
= −

         (4.29) 

then Paige and Saunders [7] show that the relations 
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     (4.30) 

 
hold to machine accuracy. In the second equation 1kτ +  represents the last component of 

[ ]1 1 2 1, , , T
kt τ τ τ+ = k+ .  They also show that ( ),k kr f  are acceptable solutions of 

 

min
0f

H g
f

Iλ
⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

       (4.31) 

 
if the values of 1kt +  or 1 1k kα τ+ +  are sufficiently small.
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5.0 Computational Results 
 
    Before deconvolution was applied to the original measured bar code images, a 
simulation was developed in order to better understand the data distortion brought about 
by the convolution process.  These computations required several stages. First, the targets 
or ground truth images had to be created.  There were three of those. Second, the 
individual beam matrices had to be generated for simulated probing of the target at 10 m, 
20 m and 40 m.  Next the target images, originally defined as matrices, had to be 
converted to vector form and the beam matrices had to be put into a form to use as 
convolution kernels.  Next the target images were blurred by computing the convolutions.  
Finally a least squares deconvolution process was applied to the blurred images to 
retrieve the original images.  The first two subsections describe creating the simulated 
ground truth data and the simulated blurred bar code images.  The third subsection 
describes the experience with deconvolving the measured bar code images using various 
Beam Spread Functions. 
 

 
5.1 Creating Simulated Ground Truth Bar Code Data 
 
    Determining the ground truth version of an image obtained by a LADAR is a nontrivial 
task.  One solution is to declare, in the case of the bar code images, that an image 
acquired at say 5 m would be considered ground truth.  Another might be to take a 
photograph of the bar code display and scale, if possible, the photograph’s spatial and 
intensity values to approximately those of a LADAR image taken at the same distance. 
However, in all of these cases, the data would be affected by the blurring nature of the 
data acquisition device.  One could agree that at certain distances these effects would be 
considered minimal.  Another approach, however, and the one taken in this report, is to 
build simulated bar code data sets using the distribution of the intensities from acquired 
LADAR data.  This approach allows one to create properly sized ground truth data sets, 
depending on the values of the mesh size of the acquired data (ng) and the matrix size of 
the beam spread function being evaluated (ma), since the number of grid points in the 
ground truth data set is related to these two quantities. 
 
    A MATLAB script for the simulated ground truth bars is given in Appendix C2.  It 
generates three sets of simulated bar codes depending on bar widths.  The specifications 
for these bar code configurations are based upon the experimental bar code artifacts.  
Each set of bar codes consists of three rows of bars, each of height 0.1524 m (6 in).  The 
rows are separated by 0.0762 m (3 in).  The axes are taken so that the Z-axis is directed 
downwards, the Y-axis toward the right and the X-axis pointed forward. The origin of the 
axis system is taken as the center of the middle bar of the middle row.  The rows are 
numbered 1 to 3 starting with the lower row.  The individual bars are numbered left to 
right beginning with the lower row as 1, 2, 3.  The second row, left to right, is 4, 5, 6. 
Finally the upper row, left to right is 7, 8, 9.  The distances between bars in the lower first 
row is 0.0254 m (1 in), between bars in the second row is 0.0508 m (2 in), and finally in 
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the third row the distance is 0.1016 m (4 in).  Each of the three sets of bar codes has the 
same height.  The three widths are 0.1016 m (4 in), 0.0508 (2 in) and 0.0254 m (1 in).  
 
    Figures 5.1 – 5.3 show the three simulated ground truth data sets. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 5.1. Simulated 0.0254 m (1 in) Bar Codes. 
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Figure 5.2. Simulated 0.0508 m (2 in ) Bar Codes. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.4 shows the simulated 0.1016 m (4 in) bar configuration with Gaussian noise 
added. The colors in all of the figures are set by the default MATLAB color table. 

 
 

Figure 5.3. Simulated 0.1016 m (4 in) Bar Codes. 

 
 
 
 

 
Figure 5.4. A 3D plot of the simulated 0.1016 m (4 in) bar configuration. It 
shows the slight variability of the data around the mean.
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5.2 Creating Simulated Distorted Bar Code Images 
 
    The first computation performed was to use the simulated ground truth data sets and 
several models of the beam spread functions to generate blurred images.  This involved a 
straightforward convolution calculation where the simulated bar code images played the 
part of the F function and the blurring models played the part of the H function.  
 
5.2.1 Simulated Three Beam Model 
 
    Based upon the measurements of the LADAR beam described in Section 2, three 
models of the beam were constructed with one each for 10 m, 20 m and 40 m.  For 10 m 
a single averaging filter was created and for 20 m and 40 m two beam models were 
constructed of three vertical averaging filters each.  All of the beam models were defined 
in terms of discrete points with grid spacing the same as the grid spacing of the ground 
truth data sets.  Each of the discretized beams was specified in terms of a square array.  
The 10 m discretized beam was taken as a 15 x 15 array, the 20 m discretized beam was a 
17 x 17 array and the 40 m discretized beam was a 29 x 29 array.  Each of the mesh 
spacings was taken as approximately 3 mm, which was the mesh spacing of the simulated 
ground truth data.  For all practical purposes, it was assumed that the beam model meshes 
and the ground truth meshes were identical. 
 
    For the 10 m beam model, a subset of the 15 x 15 grid was selected.  Nonzero values 
were assigned to a subgrid of 8 vertical points by 15 horizontal points that fell across the 
middle of the 15 x 15 grid.  This subgrid simulated the approximate 27 mm x 55 mm 
beam at 10 m and comprised 120 points.  The nonzero value assigned to each subgrid 
point was 1/120 so that the beam model would act like an averaging filter in the 
convolution process. 
 
    The 20 m and 40 m beam models were each made up of three submatrix averaging 
filters to simulate the split beams as described in Section 2.  For the 20 m model, the grid 
spacing was divided so that there were three 15 x 4 nonzero subgrids, far left, middle, and 
far right, separated by two approximately equal zero subgids.  Since there were 180 
nonzero grid points, 1/180 was assigned to each point. For the 40 m model three nonzero 
subgrids were selected, a 29 x 5 to the far left, a 29 x 7 in the middle and a 29 x 5 to the 
far right with zero assigned elsewhere.  Since there were 493 nonzero grid points a value 
of 1/493 was assigned to each of them. 
 
5.2.2 Simulated Blurred Bar Codes 
 
    In this section we show the results of using the three simulated beam models as 
convolution kernels applied to the simulated ground truth bar codes.  The blurred images 
were compared with the actual measured bar code images.  This comparison is shown in 
Figure 5.5 for the 0.0254 m (1 in) bars, in Figure 5.6 for the 0.0508 m (2 in) bars, and in 
Figure 5.7 for the 0.1016 m (4 in) bars. 
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Figure 5.5
20 m and 

Actual Bar Images 
Simulated Blurring
. Comparison of Simulated Blurring of 0.0254 m (1 in) Bar Codes at 10 m, 
40 m with measured Bar Codes. 
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Figure 5.6. Comparison of Simulated Blurring of 0.
and 40 m with measured Bar Codes. 
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Figure 5.7. Comparison of Simulated Blurring of 0.1016 m (4 in) Bar Codes at 10 m,
20 m and 40 m with measured Bar Codes. 



    The first observation that can be made about the differences of the simulated blurred 
LADAR images and the measured LADAR images is that the measured images appear 
broader horizontally than the simulated images. Due to the convolution integral the 
simulated blurring process is only a local averaging.  The figure does show that the beam 
model does average together portions of neighboring bars. This also appears to happen 
with the measured data, but the measured data appears to be broader horizontally. This 
suggests that there are nonlinear components to the LADAR data acquisition process in 
addition to local averaging. Some simple measurements of the blurred data at 10 m 
indicated that the 0.0254 m (1 in) bar measured data spread horizontally to approximately 
0.07112 m (2.8 in) whereas vertically they did not spread beyond 0.1524 m (6 in). The 
0.0508 m (2 in) bars expanded horizontally to approximately 0.1016 m (4 in) and the 
0.1016 m (4 in) bars expanded to approximately 0.1524 m (6 in). Again no appreciable 
vertical expansion was noted. This clearly indicated that a more complex model than the 
linear deconvolution model would probably be required to do a complete deconvolution. 
 
    Next we can examine the groupings by bar size. For the 0.0254 m (1 in) bars the 
simulated averaging filter at 10 m tends to produce peaks in the lower bars in the middle 
between the two bars. This is a known phenomenon in imaging. An averaging filter that 
overlaps two objects separated by a low intensity region will produce a peak between the 
two objects. This phenomenon does not appear in the measured image. Thus the effect of 
the beam on the bar code artifacts involves more than averaging. How the photons are 
reflected and processed by the LADAR is an open question that requires specialized 
metrology devices not currently available. At 20 m and 40 m, the multiple beam models 
do seem to produce simulated blurred results that have some relation to the measured 
data. Again all of the measured data show a horizontal broadening effect. 
 
    For the 0.0508 m (2 in) simulated bars, the blurring again produces sharper edged 
results than the measured responses. We should note that at 40 m the simulated and 
measured results seem to have similar peaks suggesting again that the split beam model is 
likely to be a candidate portion of the true blurring process. At 20 m however the split 
beam model does not appear to produce the correct peak locations. This is also reflected 
in the 0.1015 m (4 in) bar images, whereas the 10 m and 40 m results seem to be related.  
 
    All of these results indicate that the beam models selected are weak approximations of 
the true imaging process. However, until both a more theoretical analysis of the LADAR 
imaging process and more detailed metrology devices are available for the study of 
LADARs, we have to depend on the approximate models. These approximate models will 
reveal below the extent to which ground truth can be recovered from the measured 
images of the bar code artifacts. 
 
5.3 Ground Truth Reconstruction Using Various Beam Spread 
Functions 
 
    In this section we cover the results obtained through reconstruction or deconvolution 
calculations using two classes of beam spread functions. The first set is based on the 
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beam spread functions used in the previous section to simulate blurred bar codes. The 
second set is based on beam spread functions created from the measured spot data. 
 
5.3.1 Reconstruction Using Averaging Filters 
 
    Figure 5.8 shows the possibility of deconvolving the blurred 0.0254 m (1 in) and 
0.0508 m (2 in) bars at 10 m. In both cases the simple solid averaging filter was used. As 
can be seen, the lower group of three bars has been separated to the point that they could 
be identified. 
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 Figure 5.9. This figure shows the effect of applying different sized filters to 

reconstructing 0.0254 m (1 in.) bar codes.  
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Figure 5.10. This figure shows the effect of applying 
reconstructing 0.0508 m (2 in.) bar codes. 
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LADAR spreads data more horizontally than vertically. Figs. 5.9 and 5.10 were created 
after 10 iterations of the deconvolution algorithm.  More iterations did not necessarily 
create a better reconstructed image.  This will be shown in a figure below. 
 
 
5.3.2 Reconstruction Using Filters Based on Spot Reflections 
 
    The data used to develop the beam spread functions used for these calculations was 
described in Section 2.5.2. Fig. 5.11 shows a sample distribution of the spread function 
model for the 0.00635 m (1/4 in) spot data.  A similar distribution was developed for the 
0.0127 m (1/2 in) spot data.  Both were developed from data acquired at 10 m.  As Figs. 
5.12 and 5.13 show, the filters constructed based on the spot data did not produce 
successful bar code reconstructions at 10 m.  The reconstruction using the smaller 
reflection point data appears more successful than that for the larger spot data. 
Furthermore, as shown in Fig. 5.12, a 3 x 11 element matrix filter produced the best 
results.  Thus the 11 x 11 matrix with a submatrix of 3 non-zero rows from the 0.00635 m 
(1/4 in) spot data produced somewhat better results than did a submatrix with the full 11 
non-zero rows. 
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Figure 5.11. Sample plot of the data distribution from a 0.00635 m
(1/4 in.) spot at 10 m. 
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Figure 5.12. Reconstruction results of 0.0508 m (2 in) bar codes at 10 m using filters based on 
data from 0.00635 m (1/4 in.) reflected spot data. 
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Figure 5.13. Reconstruction of 0.0508 m (2 in) bars with data from 0.0127 m (1/2 in) 

spot data using an 11 x 11 submatrix filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3.3 Convergence Aspects of the Reconstruction Process 
 
    When the deconvolution algorithm converged to a solution, it did so in only a few 
iterations. Allowing the algorithm to proceed for more iterations tended to degrade the 
solution image. This is demonstrated in Figs. 5.14 and 5.15. 
 
    Figure 5.14 shows the progress of the deconvolution process on the measured 
0.0254 m (1 in) bars at 10 m. The figure shows iterations 1, 2, 5, 6, 9 and 10. The lower 
three bars are beginning to be reconstructed by iterations 5 and 6 and are essentially 
recovered by iteration 10. This was the general experience of applying the Paige and 
Saunders algorithm. That is, when there is convergence, it occurs rapidly. These results 
were achieved using the flat filter. 
 
    Figure 5.15 shows the results of allowing the algorithm to proceed to 100 iterations 
using the 0.00635 m (1/4 in) spot data. The result can be compared with Fig. 5.12 to 
show that adding more iterations tends to degrade results.  Possible reasons for this 
degradation the accumulation of round off and increased oscillation in the solution image.  
This can be observed in Fig. 5.14. Note that as the iteration progresses more surface 
oscillations become visible. 
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Figure 5.14. This figure shows sample iteration results of t
used to deconvolve the measured 0.0254 m (1 in) bars at 10
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Figure 5.15. 100 iterations of the deconvolution algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3.4 Reverse Engineering Filter Construction 
 
    One approach to constructing a deconvolving filter is to reverse the position of the 
ground truth vector and the filter matrix. That is, one assumes that the ground truth is 
known and that the filter is unknown. Thus the general problem of solving for the filter 
becomes one of solving G = FH where G is the blurred image and F is the assumed 
ground truth put into a matrix form while the unknown filter is treated as an unknown 
vector H. A sample program for performing the reverse engineering filter identification is 
given in Appendix C5. The essential idea in the subroutine Aprod was to set the indices 
up in such a manner that the ground truth matrix aligned with the filter matrix, treated as 
a vector. A discussion of how these matrices were aligned is also given in Appendix 
C5.1. 
 
    When the program was implemented on the simulated 0.0254 m (1 in) bar data, it 
produced a filter essentially the same size as the blurred image but the product of the 
ground truth matrix and the reverse engineered filter produced a blurred image nearly 
indistinguishable from the blurred image. This is shown in Fig. 5.16. 
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    Even though the reverse engineering algorithm appeared to produce a filter that could 
reproduce the original blurred data when applied to the simulated ground truth, when the 
filter was used in the deconvolution progam it was unsuccessful in reproducing the 
ground truth image. This is shown in Fig. 5.17. 
 
 

 
 

Figure 5.17. Result of applying the reverse engineered filter in the 
deconvolution program using the 0.0254 m (1 in) bar measured data. 
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6.0 Summary and Future Directions 
 
6.1 Summary 

 
The applications for LADARs, ranging from terrain representation to object 

recognition, have been increasing steadily over the past two decades and continue to 
grow.  As compared to traditional methods, LADARs enable the rapid capture of large 
amounts of 3D information- several million points per scan.  A typical LADAR locates a 
point via range and angular information, providing coordinates centered at the 
instrument.  In addition to range and angular information, most LADARs return an 
intensity level that can be used for imaging.  Some LADARs also return other spectral 
data such a red, green, and blue color levels. 
 

LADARs have been used at NIST for several projects.  One of these projects, 
involved the use of LADARs for object recognition at construction sites.  Object 
recognition is crucial from several standpoints:  automating processes such as “pick and 
place”, ground truth determination, inventory, and obstacle avoidance.  The wide and 
ubiquitous use of bar codes led to the possibility of a similar implementation for a 
construction site.  The idea was to use the intensity information from a LADAR to “read” 
a bar code.  Experiments were conducted to determine the feasibility of this idea. 

 
These experiments involved scanning bar codes made of highly reflective material 

in various configurations and at various distances.  The data obtained by the LADAR 
indicated that beyond 10 m the images of the bar become so distorted that image 
processing techniques would  have to be applied to even attempt to recover the bar 
configurations.  However, the image processing techniques require an understanding of 
how the LADAR beam dispersed and was reflected, and how the return signal is 
processed by the LADAR optics.  Much of the information about data processing by the 
LADAR is usually proprietary to the LADAR manufacturer. 

 
An attempt was made to create an approximate model of these processes, called a 

Beam Spread Function.  This beam spread function was needed  to attempt to reconstruct 
or deconvolve the bar configurations from the distorted images.  The deconvolution 
algorithm used depended on an iterative solution method for a large least squares 
minimization problem in which the distorted LADAR image was approximated by the 
product of a large matrix representing the Beam Spread Function and the unknown 
ground truth image.  The Beam Spread Function model was represented by a large sparse 
matrix.  In order to minimize computation time in the iterative least squares algorithm a 
fast sparse matrix – vector multiply algorithm was developed that also minimized storage 
requirements for the matices and vectors involved. 

 
Although deconvolution is often highly successful in reconstructing photographic 

images, the results of the current study indicate that until finer resolution LADARs are 
made available, deconvolution techniques have limited capability of recovering LADAR 
images. 
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6.2. Future Work 
 

The methods used to approximate the beam spread function were very crude as 
there were no procedures, standard or otherwise, and facilities available for this purpose. 
These experiments and others to characterize a LADAR underscore the necessity of an 
intramural test facility.  In keeping with its mission as the Nation’s metrology laboratory, 
NIST is in a position to provide such metrology support to both users and manufacturers 
of LADARs in addition to meeting its own substantial internal calibration needs.  As a 
first step towards establishing this test facility, a LADAR calibration facility workshop 
was convened in June, 2003.  It is envisioned that such a facility would enable 
characterization of LADARs in terms of range and pointing angle uncertainties, beam 
spread, and resolution. 
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APPENDIX A: Fast Matrix Vector Products 
  
 
    The least squares algorithm outlined in Section 6.2 and detailed below in Appendix B 
required the calculation of matrix products of the form Hf and . The algorithms for 
both of these products are intimately related. They assume that a ground truth image, the 
distorted image and beam matrix are specified as in Section 5. 

gH T

 
A.1 Calculating Hf 
 
    The object of the algorithm to compute the distorted image g = Hf is to perform the 
operation by only storing the ground truth image, f, and beam spread matrix, which is 
only of size ma x ma. That is, compute the ng x ng distorted image by only storing the ma 
x ma beam spread matrix and the nf x nf ground truth image. 
 
    One begins by storing the distorted image g and the ground truth image f as vectors by 
columns 
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With f and g stored as vectors an examination of the discrete convolution double 
summation shows that the calculation would require the beam spread function be stored 
as a large sparse matrix of the form 
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where, for q = 1, …, ma 
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    Each block Hq is made up of ng rows by nf columns. The entire H matrix is made up of 
ng2 rows by nf 2 columns. Each line of block Hq is made up of the same values but shifted 
by one for each row. The entire H matrix is made up of the same block rows but shifted 
by one block at the next block row.  The significant thing about this structure is that one 
does not need to store the entire matrix. In fact one only needs to store the ma x ma beam 
spread matrix. 
 
    Since f and g are stored by column one can re-index them as a single dimension array 
f(k) = f(i, j) where k = (j-1)*nf + i and g(l) = g(r,s) where l = (s-1)*ng + r. Next write f 
and g as blocks of vectors 
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where 
 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
+−
+−

=

)*(

)2*)1((
)1*)1((

nfif

nfif
nfif

fi

(( 1)* 1)
(( 1)* 2)

( .5)

( * )

p

g s ng
g s ng

g A

g s ng

− +⎛ ⎞
⎜ ⎟− +⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 
 

 63



The algorithm generates the g vector a block vector gp at a time where p = 1, 2, …, ng 
and 
 
 

1 2 1 ( 1) ( .6)p p p ma p mag H f H f H f A+ + −= + + +
 
 
    Given a p one now steps across the fi blocks by letting i = p, …, p+(ma-1). To do this 
introduce an index k = 0, 1, …, ma-1 and set i = p+k and observe that the product 
Hk+1fp+k looks like 
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where one uses the fact that ma-k = ma-(k+1)+1. 
 
    The algorithm proceeds as follows: Step through p = 1, 2, …, ng, i.e. loop on each g 
vector block. For each p, step through l = 1, 2, …, ng, i.e. loop on each row of the pth 
vector block. Compute the current global element of the g vector that is being computed 
as j = (p-1)*ng + l. Form the double sum below.  
 
 

1 1
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k q

g j H ma q ma k f p k nf l q A
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    This algorithm can be implemented with 4 loops and 13 lines of code as shown in the 
sample FORTRAN 90 code below. 
 
DO p = 1,ng   ! Loop over each y block of ng elements 
 DO l = 1,ng  ! Loop over local row number within y block 
  j = (p-1)*ng + l 
  sum = 0.0 
  DO k = 0,ma-1  ! Loop over f blocks of nf elements 
   DO q = 0,ma-1 ! Form the inner product for row j 
    e = (p + k - 1)*nf +l + q 
    sum = sum + h(ma-q,ma-k)*f(e) 
   END DO 
  END DO 
  g(j) = g(j) + sum  ! Add A*f to g for row j 
 END DO 
END DO 
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A.2 Calculating  HTg 
 
    The algorithm to compute  begins by setting in vector block form gH T
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as in Equation (A.4). The transpose of H looks like 
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The computation  can be written in columnd form as gHf T=
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For the sake of the current discussion initialize f = 0. Then the left hand side can be 
computed by iterative block summations. We observe that nf = ng + ma – 1. Thus for 
each g block  p = 1, 2, …, ng 
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Block 1 
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    This sequence of block operations constitutes the outer loop of the algorithm. For the 
pth block in this loop one must compute individual elements on the left using elements on 
the right. This constitutes the first inner loop where each local index of  is associated 
with the global index used to define the entire vector g. Thus, for each l = 1, 2, …, ng 
associate the global index j = (p-1)ng + l. Therefore, the p

pg

th block of g can be written 
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Note that in each p block there are ma separate summations given by 
 

p
T
kkpkp gHff 1+++ +=  

 
for k = 0, 1, …, ma-1 which constitutes the second inner loop. The matrix-vector product 

 is evaluated as an accumulated summation p
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where the index q = 0, 1, …, ma-1 represents the index of the final inner loop. The left 
hand vector  is given by kpf +
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    Note that the entire summation above is identified by two indices. The index l = 1, 2, 
…, ng identifies the term in the summation. The index q = 0, 1, …, ma-1 identifies the 
row for the given term l.  If we assume that the vector  has been initialized before 
the summation begins then the sum can be accumulated as 

kpf +

 
))1((),())1(())1(( lngpgkmaqmahqlnfkpfqlnfkpf +−−−+++−+=++−+  

 
This summation proceeds as follows. Beginning with the l = 1 term the first ma rows (i.e. 
q = 0, 1, …, ma-1) are added to the initialized first ma elements of   (i.e. l + q = 1, 2, 
…, ma).  Then the elements of  rows 2, 3, …, ma + 1 of the l = 2 term are added to the 2, 
3, …, ma + 1 elements of   (i.e. l + q = 2, 3, …, 2 + (ma –1)).  Next rows 3, 4, …, 
ma + 2  of the l = 3 term are added to rows  3, 4, …, ma + 2 of   (i. e. l + q =  3, 4, 
…, 3 + (ma – 1)). This process continues until l = ng. Note that the indexing accounts for 
the shifting down by one element of the columns of   for l = 1, 2, …, ng. 

kpf +

kpf +

kpf +

T
kH 1+

 
    In terms of the actual implementation of the code k is incremented after l is set. That is, 
all first terms of the sum are accumulated for k = 0, 1, …, ma –1, then the second terms 
are accumulated for each k and so forth. 
 
 
DO p = 1,ng 
 DO l = 1,ng 
  j = (p-1)*ng + l 
  gj = g(j) 
  DO k = 0,ma-1 
   DO q = 0,ma-1 
    e = (p+k-1)*nf + l + q 
    f(e) = f(e) + h(ma-q,ma-k)*gj 
   END DO 
  END DO 
 END DO 
END DO 
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APPENDIX B: LSQR Algorithm 
 
    In this appendix we present an expanded discussion of the least squares algorithm 
presented in Section 4. The algorithm is that of Paige and Saunders [6, 7]. The first part 
of the appendix describes the iterative development of the U and V matrices such that 
 

TH UBV=  
 
where B is bidiagonal.  The second part of the appendix describes the algorithm for the 
sequential minimization of a reduced least squares problem. 
 
B.1 Computing U and V 
 
    To compute U and V, given columnwise with 
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implies that 
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or to compute the (i+1)-st term of U let 
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where 1+iβ  is selected so that .11 =+iu  Furthermore 
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Then 
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or to compute the (i+1)-st term of V let 
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    Thus one can sequentially generate the columns of U, V and the bidiagonal elements of 
B as follows. Initialize 1 /u g β=  where 1 gβ = . Next compute  so that  
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At the kth stage one would have computed 
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where  is a (k+1) x k  matrix.  One further has kB
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since 
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It is clear that 
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One can also show that 
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B.2 The sequential minimization algorithm 
 
    Now we will explain the algorithm used to solve a sequence of minimization problems 
written as 
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For notation, set 
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kr  and  are related by 1+kt
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since 
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    Introduce the augmented matrix of columns ][ 11eBk β . It will be shown below that 

 can be transformed by an orthogonal matrix  as follows kB kQ
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where  is (k+1) x (k+1),  is (k+1) x k. The right hand side is (k+1) x k and kQ kB
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    To show how the orthogonal matrix  is developed let kQ
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Suppose that B has been reduced at the  (k-1)st step to 
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Construct the kth Givens rotation matrix as follows. 
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where are on the k-th row and kk sc , kk cs −,  are on the (k+1)st row with  on the 
diagonal. This becomes an orthogonal matrix if one selects . Note that 
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    At this point one sets 01 =− +kkkk cs βα  and selects 
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This selection satisfies the previous criterion and then one can set 
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Note that in the last step 1+nβ  is transformed to zero.  This says that at the kth stage the 
rotation essentially performs 
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Now applying the matrix  to the augmented matrix kQ [ ]11eBk β  gives 
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The significance of this decomposition, called a QR factorization, is that we can write 
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Therefore the left member is minimized if one solves kkk fyR =  and the minimum is 
equal to the last term, where 
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Although this relationship will not be needed directly it is interesting to note the 
relationship between  and 1+kt 1+kφ  is given by 
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This relationship follows from the orthogonality of  and kQ
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under the assumption that  has been computed from  ky k k kR y ϕ= . 
 
    The previous relations make it possible to compute kf  directly without computing  
or . In particular write 

ky

1+kt
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Define 
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The columns of   can be found directly from kD
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by forward substitution. The significance of using forward substitution is that the 
columns can be computed iteratively as needed and then discarded. The columns are 
computed as follows. Set 
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Then 
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which implies, setting ,  000 == xd
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and 
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This implies that kf  can be computed in an iterative fashion. The actual algorithm of 
Paige and Saunders [7, 8] introduces a slightly different but equivalent iteration. In 
particular, write 
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Then set kkk dw ρ=  and write the two step iteration 
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    The iterative algorithm of Paige and Saunders [7, 8] can now be formulated as follows. 
 
Step 1: Initialization 
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Step 2: Execute the outer loop 
 
For  i = 1,2,3, … do steps 3 through 6. 
 
Step 3: Get the current values of u and v. 
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Step 4: Apply the Givens rotation 
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Step 5: Update f and w 
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Step 6: Test for convergence 
 
If  the algorithm converged exit, otherwise return to step 2. 
 
 
To test for convergence Paige and Saunders [6, 7] estimate the following items 
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To estimate kr  one begins with 
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Since the norm of orthogonal matrices is one and the norm of  is one then 1+ke
 

1+= kkr φ .    (B.47) 
 

But 1+kφ  is computed by 
 

kk sss 2111 βφ =+     (B.48) 
 

so that 
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and since  in magnitude is less than one the iterative product pushes the norm to zero. is
 
In estimating T

kH r  one is really estimating the difference between the right and left 
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Note that 
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But  since 10T
k kR e +⎡ ⎤ =⎣ ⎦ [ ]0T

kR  has k rows and k+1 columns with the (k+1)-st 

column identically zero and the vector  has all zero elements except with a one in the 
(k+1)-st element. Also  since 

1+ke

kk
T
k

T
k ceQe −=++ 11

 

[ ] [ ]1 1

1
0 0

0 0 1 1 0
0 0
1 1

T T
k k k k k

k k

k k

e Q e s c c
c s
s c

+ +

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

k− = −     (B.53) 

 
so that 
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As long as 1+kα  does not grow too rapidly then this decreases towards zero. 
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APPENDIX C: Sample Programs 
 

NIST Standard Software Disclaimer 
 
    This software was developed at the National Institute of Standards and Technology by 
employees of the Federal Government in the course of their official duties. Pursuant to 
title 17 Section 105 of the United States Code this software is not subject to copyright 
protection and is in the public domain. The individual programs are part of an 
experimental system.  NIST assumes no responsibility whatsoever for its use by other 
parties, and makes no guarantees, expressed or implied, about its quality, reliability, or 
any other characteristic. Users of the programs assume sole responsibility under Federal 
law for determining the appropriateness of its use in any particular application; for any 
conclusions drawn from the results of its use; and for any actions taken or not taken as a 
result of analyzes performed using these tools.  We would appreciate acknowledgement if 
the software is used. 

 
 

 
INTENT AND USE

 
    The algorithms, procedures, and computer programs described in this report constitute 
a methodology for predicting some of the consequences resulting from LADAR scans.  
They have been compiled from the best knowledge and understanding currently 
available, but have important limitations that must be understood and considered by the 
user.  The program is intended for use by persons competent in the field of image 
processing and with some familiarity with personal computers. It is intended as an aid in 
reconstructing images blurred by LADAR optics. 
 
 

 
PROGRAMS 

 
    The following program scripts are given in this appendix: 
 

1. In Section C1 the Matlab script INT_DIST.m is given. This script takes a file 
generated by a LADAR and first produces a histogram of intensity values.  The 
histogram usually shows two dominant peaks.  The leftmost one in general 
represents background intensities and the rightmost one in general represents the 
bar code intensities.  The background is stripped from the file and the bar codes 
displayed. The user has the option of saving the displayed figures in Postscript, 
Encapsulated Postscript, JPEG, or TIFF formats.  

2. In Section C2 the Matlab script GENERATE_BAR_DATA.m is given. This 
script produces nine files of simulated ground truth data. It produces files for 
0.0254 m (1 in) bars, 0.0508 m (2 in) bars and 0.1016 m (4 in) bars at 10 m, 20 m 
and 40 m distance. 
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3. In Section C3 a FORTRAN 90 program, called CONVOLVE.F90, program 
implements a fast convolution algorithm on simulated  ground truth bar code data. 
The objects of the program are to test the effect of various convolution filters on 
the ground truth data and produce blurred images of bar code data that can be  
compared to bar code images acquired by LADAR scans. The program assumes 
the existence of a square array ground truth data set,f, and a square array, h, 
representing the convolution filter. The program produces a blurred array by 
performing a finite convolution summation 

4. In Section C4 a FORTRAN 90 program, called DECONVOLVE.F90, program 
reconstructs ground truth bar code images from blurred images obtained from 
LADAR scans. The program assumes the existence of a square array scanned data 
set,g, and a square array, h, representing the convolution filter. The program 
produces a best estimate array  of ground truth by applying an iterative least 
squares algorithm to a  finite convolution summation. It is an inverse problem. 

5. In Section C5.2 a FORTRAN 90 program, called SPREAD_FUNCTIO.F90 
constructs by a least squares algorithm  with residual correction an estimate of the 
kernel matrix that generates a given blurred image from a known ground truth 
image. 

 
.
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C1. MATLAB Script to Isolate Bar Codes 
 
%************************************************************ 
%INT_DIST - Separates Bar Code intensity data from background 
%           intensity. 
%************************************************************ 
%This file employs a simple segmentation approach in order 
%to eliminate the background intensities and distances. This 
%brings the bar code intensities and distance measurements to 
%the foreground. The assumption behind the technique is that 
%when the image intensities are histogrammed they will fall 
%into a histogram form with two prominent peaks. The first 
%peak represents the backgound intensities and the second 
%represents the bar code intensities. The algorithm to 
%eliminate the background is simply to select out the intensity 
%values less than 200. 
% 
%The input file for this script is assumed to have been  
%generated by a LADAR scanning instrument and provides 
%x, y, z, and intensity values of object hits. The units  
%of the coordinates are in meters. The intensity values are 
%integers between 0 and 255. The positive x coordinate is  
%directed from the scanner towards the target object,  
%positive y is towards the right and positive z is down. 
%The origin is the upper left data point of the scan. 
% 
%Input file format: 
% 
%The first lines are header information lines beginning 
%with #. These lines are followed by individual lines 
%of data points in four columns. The first column is x, 
%the second column is y, the third z, and the fourth  
%intensity. The input file extension must be .txt. 
% 
%Output file formats: 
% 
%There are three output file types available: 
% 
%1. The first file will have the same name as the input file 
%   with extension .dat. This file will contain only the data 
%   points with the header lines from the input stripped off. 
%   This file is automatically produced. 
%2. The second file is a file of data points of the measured  
%   bar code data extracted from the input data file with the  
%   background noise removed. This is also automatically 
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%   produced. 
%3. The third type of file is optional. Each of the figures 
%   produced has a menu button that allows the image to be 
%   stored in either Postscript (black and white), Postscript 
%   (color), Encapsulated Postscript (black and white),  
%   Encapsulated Postscript (color), JPEG, or TIFF. 
% 
%Usage instructions: 
% 
%1. First change the working directory in Matlab  
%   to the directory with the script and data files.  
%2. The current m-file is interactive. The user will be asked 
%   to enter the minimum intensity value between peaks 
%   in the histogram displayed when asked.  
%3. For titles to plots, underscores in file names  
%   are changed to hyphens for display 
%4. Each plot has a menu button to print the plot to a file  
%   in postscript, JPEG or TIFF. 
% 
% Author: 
%  David E. Gilsinn 
%  Mathematical and Computational Sciences Division 
%  National Institute of Standards and Technology 
%  100 Bureau Drive, Stop 8910 
%  Gaithersburg, MD  20899-8910 
%  e-mail: dgilsinn@nist.gov
% 
%***************************************************************** 
 
 
%Enter input file with .txt extension and create .dat file 
 
 
file_name = input('Enter file name (omit .txt):','s'); 
infile = strcat(file_name,'.txt'); 
s = strcat(file_name,'.dat'); 
fidin = fopen(infile,'r'); 
fidout = fopen(s,'w'); 
 
%Strip the Header lines from the input file 
 
while feof(fidin) ==0 
 line = fgetl(fidin); 
 match = findstr(line,'#'); 
 num = length(match); 
 if num == 0 
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  fprintf(fidout,'%s\n',line); 
 end 
end 
fclose(fidin); 
fclose(fidout); 
 
%load the .dat file 
 
load ( s); 
 
%Matlab loads the data file into a matrix with the same name  
%as the file, but if the file_name begins with a number then 
%Matlab adds an X in front of it. 
 
%Test whether the file starts with a number. If so then add X  
%in front. In either case read the matrix into the array a for 
%easier handling. 
 
if isletter(s(1)) == 0 
 X_file_name = strcat('X',file_name); 
 a = eval(X_file_name); 
else 
 a = eval(file_name); 
end 
 
%pull out array columns as vectors 
 
dist = a(:,1); 
y = -a(:,2); 
z = a(:,3); 
intensity = a(:,4); 
 
 
%Generate histogram of intensities to estimate 
%where to cut the image to get rid of background 
%"noise". Set up image output menu. 
 
f3 = figure(1); 
hist(intensity,100); 
xlabel('Intensity Level'); 
ylabel('Frequency Count'); 
s3 = strcat(file_name,'_intensity_hist'); 
new_file_name_3 = strrep(file_name,'_','-'); 
title(new_file_name_3); 
set(f3,'NumberTitle','off',... 
 'Name',s3); 
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set(f3,'NumberTitle','off',... 
 'Name',s3); 
pr3 = uimenu(f3,... 
 'Label','   Print File'); 
ps3 = uimenu(pr3,... 
 'Label','Postscript, Black and White',... 
 'CallBack','print(f3,''-dps'',s3)'); 
psc3 = uimenu(pr3,... 
 'Label','Postscript, Color',... 
 'CallBack','print(f3,''-dpsc'',s3)'); 
eps3 = uimenu(pr3,... 
 'Label','Encapsulated Postscript',... 
 'CallBack','print(f3,''-deps'',s3)'); 
epsc3 = uimenu(pr3,... 
 'Label','Encapsulated Postscript, Color',... 
 'CallBack','print(f3,''-depsc'',s3)'); 
jpg3 = uimenu(pr3,... 
 'Label','JPEG',... 
 'CallBack','print(f3,''-djpeg90'',s3)'); 
tiff3 = uimenu(pr3,... 
 'Label','TIFF',... 
 'CallBack','print(f3,''-dtiff'',s3)'); 
 
%Filter out intensities less than 200 
 
cutval = 200; 
 
%Find all intensity values greater than or equal to cutval 
 
k=find(intensity >= cutval); 
y1 = y(k); 
z1 = z(k); 
int1 = intensity(k); 
 
 
 
%Generate the Bar Code intensity image. This image 
%will likely not have a square base. 
 
f1 = figure(2); 
ylin = linspace(min(y1),max(y1),257); 
zlin = linspace(min(z1),max(z1),257); 
[Y,Z] = meshgrid(ylin,zlin); 
INT = griddata(y1,z1,int1,Y,Z,'cubic'); 
mesh(Y,Z,INT); 
xlabel('y'); 
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ylabel('z'); 
zlabel('Intensity'); 
s1 = strcat(file_name,'_intensity'); 
%change underlines to hyphens 
new_file_name_1 = strrep(file_name,'_','-'); 
title(new_file_name_1); 
set(f1,'NumberTitle','off',... 
 'Name',s1); 
pr1 = uimenu(f1,... 
 'Label','   Print File'); 
ps1 = uimenu(pr1,... 
 'Label','Postscript, Black and White',... 
 'CallBack','print(f1,''-dps'',s1)'); 
psc1 = uimenu(pr1,... 
 'Label','Postscript, Color',... 
 'CallBack','print(f1,''-dpsc'',s1)'); 
eps1 = uimenu(pr1,... 
 'Label','Encapsulated Postscript',... 
 'CallBack','print(f1,''-deps'',s1)'); 
epsc1 = uimenu(pr1,... 
 'Label','Encapsulated Postscript, Color',... 
 'CallBack','print(f1,''-depsc'',s1)'); 
jpg1 = uimenu(pr1,... 
 'Label','JPEG',... 
 'CallBack','print(f1,''-djpeg90'',s1)'); 
tiff1 = uimenu(pr1,... 
 'Label','TIFF',... 
 'CallBack','print(f1,''-dtiff'',s1)'); 
 
 
 
%Generate an output file with a square base. 
%The background base will have the value cutval 
 
[row,col] = size(INT); 
nanarray = isnan(INT); 
[ii,jj] = find(nanarray); 
for i = 1:length(ii) 
    INT(ii(i),jj(i)) = cutval; 
end 
outfile = strcat(file_name,'_cut.txt'); 
fid1 = fopen(outfile,'w'); 
for j = 1:col 
    for i = 1:row 
        fprintf(fid1,'%6.2f\n',INT(i,j)); 
    end 
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end 
fclose(fid1); 
 
 
% 
%Plot the filled in cut intensity picture 
% 
f4 = figure(3); 
mesh(Y,Z,INT); 
xlabel('y'); 
ylabel('z'); 
zlabel('Intensity'); 
s4 = strcat(file_name,'_intensity_cut'); 
%change underlines to hyphens 
new_file_name_4 = strrep(file_name,'_','-'); 
title(new_file_name_4); 
set(f4,'NumberTitle','off',... 
 'Name',s4); 
pr4 = uimenu(f4,... 
 'Label','   Print File'); 
ps4 = uimenu(pr4,... 
 'Label','Postscript, Black and White',... 
 'CallBack','print(f4,''-dps'',s4)'); 
psc4 = uimenu(pr4,... 
 'Label','Postscript, Color',... 
 'CallBack','print(f4,''-dpsc'',s4)'); 
eps4 = uimenu(pr4,... 
 'Label','Encapsulated Postscript',... 
 'CallBack','print(f4,''-deps'',s4)'); 
epsc4 = uimenu(pr4,... 
 'Label','Encapsulated Postscript, Color',... 
 'CallBack','print(f4,''-depsc'',s4)'); 
jpg4 = uimenu(pr4,... 
 'Label','JPEG',... 
 'CallBack','print(f4,''-djpeg90'',s4)'); 
tiff4 = uimenu(pr4,... 
 'Label','TIFF',... 
 'CallBack','print(f4,''-dtiff'',s4)'); 
 
% 
%expand the cut intensity figure 
% 
 
f5 = figure(4); 
k = find(intensity > cutval); 
new_intensity = intensity(k); 
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new_y = y(k); 
new_z = z(k); 
new_ylin = linspace(min(new_y),max(new_y),257); 
new_zlin = linspace(min(new_z),max(new_z),257); 
[NEW_Y,NEW_Z] = meshgrid(new_ylin,new_zlin); 
NEW_INT = griddata(new_y,new_z,new_intensity,NEW_Y,NEW_Z,'cubic'); 
mesh(NEW_Y,NEW_Z,NEW_INT); 
xlabel('y'); 
ylabel('z'); 
zlabel('Intensity'); 
s5 = strcat(file_name,'_intensity_crop'); 
%change underlines to hyphens 
new_file_name_5 = strrep(file_name,'_','-'); 
title(new_file_name_5); 
set(f5,'NumberTitle','off',... 
 'Name',s5); 
pr5 = uimenu(f5,... 
 'Label','   Print File'); 
ps5 = uimenu(pr5,... 
 'Label','Postscript, Black and White',... 
 'CallBack','print(f5,''-dps'',s5)'); 
psc5 = uimenu(pr5,... 
 'Label','Postscript, Color',... 
 'CallBack','print(f5,''-dpsc'',s5)'); 
eps5 = uimenu(pr5,... 
 'Label','Encapsulated Postscript',... 
 'CallBack','print(f5,''-deps'',s5)'); 
epsc5 = uimenu(pr5,... 
 'Label','Encapsulated Postscript, Color',... 
 'CallBack','print(f5,''-depsc'',s5)'); 
jpg5 = uimenu(pr5,... 
 'Label','JPEG',... 
 'CallBack','print(f5,''-djpeg90'',s5)'); 
tiff5 = uimenu(pr5,... 
 'Label','TIFF',... 
 'CallBack','print(f5,''-dtiff'',s5)'); 
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C2. MATLAB Script to Create Simulated Bar Codes 
 
%********************************************************************** 
%GENERATE_BAR_DATA- This script produces ground truth files for  
%                   the three bar code test configurations used to 
%                   acquire measured bar code intensity data. 
%********************************************************************** 
% This file generates simulated ground truth image data sets in vector 
% form of an approximately 1 meter by 1 meter surface with 9 bar codes 
% placed in  
% three rows with three bar codes each. This simulation attempts to  
% approximately recreate an experiment in which a board with similar 
% bar codes of reflector tape was probed by a LADAR beam at various 
% distances. The bar codes were 6 in high and 4, 2, 1 in in width for 
% the different trials. The 3 top bars were place 4 in apart, the three 
% middle bars were placed 3 in below the top row and 2 in apart, while 
% the lowest row was placed 3 in below the second with bars place 1 in 
% apart. From experimental data the intensity of the background board 
% is about 150 and the reflector tape intensity was about 250. This was 
% on a range of 0 to 255. 
% 
% The size of the simulated ground truth image depends on the desired 
% filter image size and the filter matrix size. In particular if the 
% desired filter matrix is ma x ma and the desired filtered image is ng 
% x ng elements then the ground truth image will be set to nf x nf 
% where nf = ng + ma - 1. Thus, for a filtered image of side ng 
% elements the unit step vertically is dx = 1/(ng-1) and the unit step 
% horizontally is dy = 1/(ng-1). In order to make things somewhat easy 
% to work with we assume that ng and ma are odd integers which 
% also makes nf odd. The ground truth image will be ((ma-1)/2)*dx (or 
% dy) units on a side greater than the filtered image. 
% 
%                      **************************** 
%                      *                          * 
%                      * .......................  * 
%                      * .                     .  * 
%                      * .  +++    +++    +++  .  * 
%                      * .  + +    + +    + +  .  * 
%                      * .  +++    +++    +++  .  * 
%                      * .                     .  * 
%                      * .  +++    +++    +++  .  * 
%                      * .  + +    + +    + +  .  * 
%                      * .  +++    +++    +++  .  * 
%                      * .                     .  * 
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%                      * .  +++    +++    +++  .  * 
%                      * .  + +    + +    + +  .  * 
%                      * .  +++    +++    +++  .  * 
%                      * .                     .  * 
%                      * .......................  * 
%                      *                          * 
%                      **************************** 
% 
% The figure above is a schematic of a board that holds the bar codes. 
% The  outside boundary depicted by *** represents the ground truth 
% image. Note that it is larger than the filtered image depicted by ... 
% since the filter matrix at the boundary of the filtered emage 
% overlaps the edge. Let f(i,j) represent the ground truth image. Then 
% f(1,1) is taken in the upper left corner and f(nf,nf) is in the lower right. Grid spacing  
% will be taken based on dx and dy defined above. 
% 
% The object of this script is to make nine files of barcode data for 
% 4, 2, 1 in bars. These files will simulate ground truth images for 
% each of three distances thus nine files. Distances are 10, 20 40 
% meters. The files will be used to produce filtered images of size ng 
% = 257 points on a side. Interval between  points will be 
% approximately 0.004 meters (4 mm). At 10 m the filter will be  
% ma = 15 points on a side, at 20 m the filter will be 17 points on a 
% side and at 40 m it will be 29 points on a side. The number of points 
% on a side of the ground truth image is determined by nf = ng + ma -1. 
% The matrix structure of the file is: f(1,1) is in the upper left 
% corner and f(nf,nf) is in the lower right. This is based on a beam of 
% ma x ma points. 
% 
% x direction is down and y to the right (not LADAR coordinates) 
% grid spacing in both x and y = 1/256 = 0.0039, set to 0.004 
% bar data set has dimension 1 + ((ma-1)/2)*0.004 in both directions 
% Extra amount beyond 1 m square is to accommodate the blurring operator 
% at the edges. 
% 
% The files will be written out as vectors, one entry per line, in the 
% form: 
% f(1,1), ..., f(nf,1),f(1,2),...,f(nf,2), ..., 
%                                     f(1,nf),...,f(nf,nf) 
% 
% Author: 
%  David E. Gilsinn 
%  Mathematical and Computational Sciences Division 
%  National Institute of Standards and Technology 
%  100 Bureau Drive, Stop 8910 
%  Gaithersburg, MD  20899-8910 
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%  e-mail: dgilsinn@nist.gov
% 
%********************************************************************** 
 
% 
% Define output file names 
% 
% The Barfiles will contain (x, y, z) values of the simulated ground truth data 
% 
Barfiles = ['bars10m1in.txt';'bars10m2in.txt';'bars10m4in.txt';... 
   'bars20m1in.txt';'bars20m2in.txt';'bars20m4in.txt';... 
   'bars40m1in.txt';'bars40m2in.txt';'bars40m4in.txt']; 
% 
% The Intfiles will contain only the z values for plotting of the intensities in 
% MATLAB 
% 
Intfiles = ['int10m1in.txt';'int10m2in.txt';'int10m4in.txt';... 
   'int20m1in.txt';'int20m2in.txt';'int20m4in.txt';... 
   'int40m1in.txt';'int40m2in.txt';'int40m4in.txt']; 
 
Folder = 'c:\Bar_Code_data\'; 
Barcells = cellstr(Barfiles); 
Intcells = cellstr(Intfiles); 
 
% 
% Define number of beam grid points per side 
% 
 
ma(1) = 15; 
ma(2) = 17; 
ma(3) = 29; 
 
% 
% Define the number of grid points per side for distorted image 
% 
 
ng = 257; 
 
% 
% Define grid spacing in meters 
% 
 
delta = 0.004; 
 
% 
%Specify bar code width (numbers refer to inches) 
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% 
 
 bar_width(1) = 1; 
 bar_width(2) = 2; 
 bar_width(3) = 4; 
 
% 
% Generate the nine ground truth image vector files 
% by stepping through each of the distances (10, 20, 40 m) and 
% then through the bar code sizes (4, 2, 1) 
 
% 
% Step through each beam model for a distance 
% 
 
for i = 1:3 
 
 % 
 % Compute size of ground truth image on a side 
 % 
 
 nf = ma(i) + ng -1; 
 
 % 
 % Generate the x (downward) location of the 
 % corners of the bar codes. Values are in meters 
 % Bars are numbered as follows: 
 % First index is the bar number 
 % Lowest row, left to right: 1,2,3 
 % Middle row: 4,5,6 
 % Top row: 7,8,9 
 % Second index is corner number on bar (clockwise): 
 % Corner 1 is lower left, Corner 2 is upper left, 
 % Corner 3 is upper right, Corner 4 is lower right. 
 % 
 % Offset downwards by the ground truth overlap 
 % 
 
 bar_x(7,2) = 0.1952 + ((ma(i)-1)/2)*delta; 
 bar_x(7,3) = bar_x(7,2); 
 bar_x(8,2) = bar_x(7,2); 
 bar_x(8,3) = bar_x(7,2); 
 bar_x(9,2) = bar_x(7,2); 
 bar_x(9,3) = bar_x(7,2); 
 bar_x(7,1) = bar_x(7,2) + 0.1524; 
 bar_x(7,4) = bar_x(7,1); 

 92



 bar_x(8,1) = bar_x(7,1); 
 bar_x(8,4) = bar_x(7,1); 
 bar_x(9,1) = bar_x(7,1); 
 bar_x(9,4) = bar_x(7,1); 
 bar_x(4,2) = bar_x(7,1) + 0.0762; 
 bar_x(4,3) = bar_x(4,2); 
 bar_x(5,2) = bar_x(4,2); 
 bar_x(5,3) = bar_x(4,2); 
 bar_x(6,2) = bar_x(4,2); 
 bar_x(6,3) = bar_x(4,2); 
 bar_x(4,1) = bar_x(4,2) + 0.1524; 
 bar_x(4,4) = bar_x(4,1); 
 bar_x(5,1) = bar_x(4,1); 
 bar_x(5,4) = bar_x(4,1); 
 bar_x(6,1) = bar_x(4,1); 
 bar_x(6,4) = bar_x(4,1); 
 bar_x(1,2) = bar_x(4,1) + 0.0762; 
 bar_x(1,3) = bar_x(1,2); 
 bar_x(2,2) = bar_x(1,2); 
 bar_x(2,3) = bar_x(1,2); 
 bar_x(3,2) = bar_x(1,2); 
 bar_x(3,3) = bar_x(1,2); 
 bar_x(1,1) = bar_x(1,2) + 0.1524; 
 bar_x(1,4) = bar_x(1,1); 
 bar_x(2,1) = bar_x(1,1); 
 bar_x(2,4) = bar_x(1,1); 
 bar_x(3,1) = bar_x(1,1); 
 bar_x(3,4) = bar_x(1,1); 
 
% 
% 
 for bar_w = 1:3 
 
% 
% 
% 
  %Define the bars y coordinates. bar_width is 4, 2 or 1 
  % 
  %First index is the bar number 
  %Lowest row, left to right: 1,2,3 
  %Middle row: 4,5,6 
  %Top row: 7,8,9 
  % 
  %Entering y coordinates that change with 
  %bar width working from the board center 
  % 4 in = 0.1016 m, 2 in = 0.0508 m 
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  % 1 in = 0.0254 m, 1/2 in = 0.0127 
  % 
 
  switch bar_width(bar_w) 
 
   % 
                                    % The case numbers are the bar width values 
                                    % 
   case 4 
   % 
   %Lowest row: row 1 
   % 
 
   bar_y(2,1) = ((1+(ma(i)-1)*delta)/2) - 0.0508; 
   bar_y(2,2) = bar_y(2,1); 
   bar_y(1,4) = bar_y(2,1) - 0.0254; 
   bar_y(1,3) = bar_y(1,4); 
   bar_y(1,1) = bar_y(1,4) - 0.1016; 
   bar_y(1,2) = bar_y(1,1); 
   bar_y(2,4) = ((1+(ma(i)-1)*delta)/2) + 0.0508; 
   bar_y(2,3) = bar_y(2,4); 
   bar_y(3,1) = bar_y(2,4) + 0.0254; 
   bar_y(3,2) = bar_y(3,1); 
   bar_y(3,4) = bar_y(3,1) + 0.1016; 
   bar_y(3,3) = bar_y(3,4); 
 
   % 
   %Middle row: row 2 
   % 
 
   bar_y(5,1) = ((1+(ma(i)-1)*delta)/2) - 0.0508; 
   bar_y(5,2) = bar_y(5,1); 
   bar_y(4,4) = bar_y(5,1) - 0.0508; 
   bar_y(4,3) = bar_y(4,4); 
   bar_y(4,1) = bar_y(4,3) - 0.1016; 
   bar_y(4,2) = bar_y(4,1); 
   bar_y(5,4) = ((1+(ma(i)-1)*delta)/2) + 0.0508; 
   bar_y(5,3) = bar_y(5,4); 
   bar_y(6,1) = bar_y(5,4) + 0.0508; 
   bar_y(6,2) = bar_y(6,1); 
   bar_y(6,4) = bar_y(6,1) + 0.1016; 
   bar_y(6,3) = bar_y(6,4); 
 
   % 
   %Top row: row 3 
   % 

 94



 
   bar_y(8,1) = ((1+(ma(i)-1)*delta)/2) - 0.0508; 
   bar_y(8,2) = bar_y(8,1); 
   bar_y(7,4) = bar_y(8,1) - 0.1016; 
   bar_y(7,3) = bar_y(7,4); 
   bar_y(7,1) = bar_y(7,4) - 0.1016; 
   bar_y(7,2) = bar_y(7,1); 
   bar_y(8,4) = ((1+(ma(i)-1)*delta)/2) + 0.0508; 
   bar_y(8,3) = bar_y(8,4); 
   bar_y(9,1) = bar_y(8,4) + 0.1016; 
   bar_y(9,2) = bar_y(9,1); 
   bar_y(9,4) = bar_y(9,1) + 0.1016; 
   bar_y(9,3) = bar_y(9,4); 
 
   % 
   %Write out data file 
   % 
   % Define the output file for each case 
   % 
                                    % Create the file names for the eighteen output files 
                                    %  Nine (x,y,z) files and nine z files 
                                    % output is the character string for an (x,y,z) data file 
                                    % output1 is the character sting for a z data file 
                                    % 
   file = (i-1)*3 + bar_w; 
   output = [Folder Barcells{file}]; 
   output1 = [Folder Intcells{file}]; 
   fid = fopen(output,'w'); 
   fid1 = fopen(output1,'w'); 
   for j = 1:nf 
    y = (j-1)*delta; 
    for k = 1:nf 
     %go down rows first then colums 
     x = (k-1)*delta; 
     if ((bar_x(7,2) <= x) & … 

(x <= bar_x(7,1)))... 
      & ( ((bar_y(7,2) <= y) & ... 
        (y <= bar_y(7,3)))... 
       | ((bar_y(8,2) <= y) & ... 
        (y <= bar_y(8,3)))... 
       | ((bar_y(9,2) <= y) & ... 
        (y <= bar_y(9,3))) ) 
      z = 250; 
     elseif ((bar_x(4,2) <= x) & ... 

(x <= bar_x(4,1)))... 
      & ( ((bar_y(4,2) <= y) & ... 
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        (y <= bar_y(4,3)))... 
       | ((bar_y(5,2) <= y) & ... 
        (y <= bar_y(5,3)))... 
       | ((bar_y(6,2) <= y) & ... 
        (y <= bar_y(6,3))) ) 
      z = 250; 
     elseif ((bar_x(1,2) <= x) & ... 

(x <= bar_x(1,1)))... 
      & ( ((bar_y(1,2) <= y) & ... 
        (y <= bar_y(1,3)))... 
       | ((bar_y(2,2) <= y) & ... 
        (y <= bar_y(2,3)))... 
       | ((bar_y(3,2) <= y) & ... 
        (y <= bar_y(3,3))) ) 
      z = 250; 
     else 
      z = 150; 
     end 
     fprintf(fid,'%8.4f %8.4f %6.2f\n',... 

 x,y,z); 
     fprintf(fid1,'%6.2f\n',z); 
    end 
   end 
   fclose(fid); 
   fclose(fid1); 
 
   % 
   case 2 
   % 
   %Lowest row: row 1 
   % 
 
   bar_y(2,1) = ((1+(ma(i)-1)*delta)/2) - 0.0254; 
   bar_y(2,2) = bar_y(2,1); 
   bar_y(1,4) = bar_y(2,1) - 0.0254; 
   bar_y(1,3) = bar_y(1,4); 
   bar_y(1,1) = bar_y(1,4) - 0.0508; 
   bar_y(1,2) = bar_y(1,1); 
   bar_y(2,4) = ((1+(ma(i)-1)*delta)/2) + 0.0254; 
   bar_y(2,3) = bar_y(2,4); 
   bar_y(3,1) = bar_y(2,4) + 0.0254; 
   bar_y(3,2) = bar_y(3,1); 
   bar_y(3,4) = bar_y(3,1) + 0.0508; 
   bar_y(3,3) = bar_y(3,4); 
 
   % 
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   %Middle row: row 2 
   % 
 
   bar_y(5,1) = ((1+(ma(i)-1)*delta)/2) - 0.0254; 
   bar_y(5,2) = bar_y(5,1); 
   bar_y(4,4) = bar_y(5,1) - 0.0508; 
   bar_y(4,3) = bar_y(4,4); 
   bar_y(4,1) = bar_y(4,3) - 0.0508; 
   bar_y(4,2) = bar_y(4,1); 
   bar_y(5,4) = ((1+(ma(i)-1)*delta)/2) + 0.0254; 
   bar_y(5,3) = bar_y(5,4); 
   bar_y(6,1) = bar_y(5,4) + 0.0508; 
   bar_y(6,2) = bar_y(6,1); 
   bar_y(6,4) = bar_y(6,1) + 0.0508; 
   bar_y(6,3) = bar_y(6,4); 
 
   % 
   %Top row: row 3 
   % 
 
   bar_y(8,1) = ((1+(ma(i)-1)*delta)/2) - 0.0254; 
   bar_y(8,2) = bar_y(8,1); 
   bar_y(7,4) = bar_y(8,1) - 0.1016; 
   bar_y(7,3) = bar_y(7,4); 
   bar_y(7,1) = bar_y(7,4) - 0.0508; 
   bar_y(7,2) = bar_y(7,1); 
   bar_y(8,4) = ((1+(ma(i)-1)*delta)/2) + 0.0254; 
   bar_y(8,3) = bar_y(8,4); 
   bar_y(9,1) = bar_y(8,4) + 0.1016; 
   bar_y(9,2) = bar_y(9,1); 
   bar_y(9,4) = bar_y(9,1) + 0.0508; 
   bar_y(9,3) = bar_y(9,4); 
 
   % 
   %Write out data file 
   % 
   % Define the output file for each case 
   % 
 
   file = (i-1)*3 + bar_w; 
   output = [Folder Barcells{file}]; 
   output1 = [Folder Intcells{file}]; 
   fid = fopen(output,'w'); 
   fid1 = fopen(output1,'w'); 
   % 
   for j = 1:nf 
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    y = (j-1)*delta; 
    for k = 1:nf 
     %go down rows first then colums 
     x = (k-1)*delta; 
     if ((bar_x(7,2) <= x) & ... 

(x <= bar_x(7,1)))... 
      & ( ((bar_y(7,2) <= y) & ... 
        (y <= bar_y(7,3)))... 
       | ((bar_y(8,2) <= y) & ... 
        (y <= bar_y(8,3)))... 
       | ((bar_y(9,2) <= y) & ... 
        (y <= bar_y(9,3))) ) 
      z = 250; 
     elseif ((bar_x(4,2) <= x) & ... 

(x <= bar_x(4,1)))... 
      & ( ((bar_y(4,2) <= y) & ... 
        (y <= bar_y(4,3)))... 
       | ((bar_y(5,2) <= y) & ... 
        (y <= bar_y(5,3)))... 
       | ((bar_y(6,2) <= y) & ... 
        (y <= bar_y(6,3))) ) 
      z = 250; 
     elseif ((bar_x(1,2) <= x) & ... 

(x <= bar_x(1,1)))... 
      & ( ((bar_y(1,2) <= y) & ... 
        (y <= bar_y(1,3)))... 
       | ((bar_y(2,2) <= y) & ... 
        (y <= bar_y(2,3)))... 
       | ((bar_y(3,2) <= y) & ... 
        (y <= bar_y(3,3))) ) 
      z = 250; 
     else 
      z = 150; 
     end 
     fprintf(fid,'%8.4f %8.4f %6.2f\n',... 

 x,y,z); 
     fprintf(fid1,'%6.2f\n',z); 
    end 
   end 
   fclose(fid); 
   fclose(fid1); 
 
   % 
   case 1 
   % 
   %Lowest row: row 1 
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   % 
 
   bar_y(2,1) = ((1+(ma(i)-1)*delta)/2) - 0.0127; 
   bar_y(2,2) = bar_y(2,1); 
   bar_y(1,4) = bar_y(2,1) - 0.0254; 
   bar_y(1,3) = bar_y(1,4); 
   bar_y(1,1) = bar_y(1,4) - 0.0254; 
   bar_y(1,2) = bar_y(1,1); 
   bar_y(2,4) = ((1+(ma(i)-1)*delta)/2) + 0.0127; 
   bar_y(2,3) = bar_y(2,4); 
   bar_y(3,1) = bar_y(2,4) + 0.0254; 
   bar_y(3,2) = bar_y(3,1); 
   bar_y(3,4) = bar_y(3,1) + 0.0254; 
   bar_y(3,3) = bar_y(3,4); 
 
   % 
   %Middle row: row 2 
   % 
 
   bar_y(5,1) = ((1+(ma(i)-1)*delta)/2) - 0.0127; 
   bar_y(5,2) = bar_y(5,1); 
   bar_y(4,4) = bar_y(5,1) - 0.0508; 
   bar_y(4,3) = bar_y(4,4); 
   bar_y(4,1) = bar_y(4,3) - 0.0254; 
   bar_y(4,2) = bar_y(4,1); 
   bar_y(5,4) = ((1+(ma(i)-1)*delta)/2) + 0.0127; 
   bar_y(5,3) = bar_y(5,4); 
   bar_y(6,1) = bar_y(5,4) + 0.0508; 
   bar_y(6,2) = bar_y(6,1); 
   bar_y(6,4) = bar_y(6,1) + 0.0254; 
   bar_y(6,3) = bar_y(6,4); 
 
   % 
   %Top row: row 3 
   % 
 
   bar_y(8,1) = ((1+(ma(i)-1)*delta)/2) - 0.0127; 
   bar_y(8,2) = bar_y(8,1); 
   bar_y(7,4) = bar_y(8,1) - 0.1016; 
   bar_y(7,3) = bar_y(7,4); 
   bar_y(7,1) = bar_y(7,4) - 0.0254; 
   bar_y(7,2) = bar_y(7,1); 
   bar_y(8,4) = ((1+(ma(i)-1)*delta)/2) + 0.0127; 
   bar_y(8,3) = bar_y(8,4); 
   bar_y(9,1) = bar_y(8,4) + 0.1016; 
   bar_y(9,2) = bar_y(9,1); 
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   bar_y(9,4) = bar_y(9,1) + 0.0254; 
   bar_y(9,3) = bar_y(9,4); 
 
   % 
   %Write out data file 
   % 
   % Define the output file for each case 
   % 
 
   file = (i-1)*3 + bar_w; 
   output = [Folder Barcells{file}]; 
   output1 = [Folder Intcells{file}]; 
   fid = fopen(output,'w'); 
   fid1 = fopen(output1,'w'); 
   % 
   for j = 1:nf 
    y = (j-1)*delta; 
    for k = 1:nf 
     %go down rows first then colums 
     x = (k-1)*delta; 
     if ((bar_x(7,2) <= x) & ... 

(x <= bar_x(7,1)))... 
      & ( ((bar_y(7,2) <= y) & ... 
        (y <= bar_y(7,3)))... 
       | ((bar_y(8,2) <= y) & ... 
        (y <= bar_y(8,3)))... 
       | ((bar_y(9,2) <= y) & ... 
        (y <= bar_y(9,3))) ) 
      z = 250; 
     elseif ((bar_x(4,2) <= x) & ... 

(x <= bar_x(4,1)))... 
      & ( ((bar_y(4,2) <= y) & ... 
        (y <= bar_y(4,3)))... 
       | ((bar_y(5,2) <= y) & ... 
        (y <= bar_y(5,3)))... 
       | ((bar_y(6,2) <= y) & ... 
        (y <= bar_y(6,3))) ) 
      z = 250; 
     elseif ((bar_x(1,2) <= x) & ... 

(x <= bar_x(1,1)))... 
      & ( ((bar_y(1,2) <= y) & ... 
        (y <= bar_y(1,3)))... 
       | ((bar_y(2,2) <= y) & ... 
        (y <= bar_y(2,3)))... 
       | ((bar_y(3,2) <= y) & ... 
        (y <= bar_y(3,3))) ) 
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      z = 250; 
     else 
      z = 150; 
     end 
     fprintf(fid,'%8.4f %8.4f %6.2f\n',... 

 x,y,z); 
     fprintf(fid1,'%6.2f\n',z); 
    end 
   end 
   fclose(fid); 
   fclose(fid1); 
  %end switch on bar-width 
  end 
    %end of bar_w cases 
    end 
% end of distance cases 
end 
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C3. FORTRAN 90 Convolution Program 
 
C3.1 Program CONVOLVE.F90 
 
!********************************************************************** 
! 
!CONVOLVE.F90  
! 
! This program implements a fast convolution algorithm on simulated  
! ground truth bar code data. The objects of the program are to test 
! the effect of various convolution filters on the ground truth 
! data and produce blurred images of bar code data that can be  
! compared to bar code images acquired by LADAR scans. The program 
! assumes the existence of a square array ground truth data set,f, and 
! a square array, h, representing the convolution filter. The 
! program produces a blurred array by performing a finite convolution 
! summation. 
! 
! Let  
! ma = side length of filter (integer), 
! nf = side length of ground truth image (integer), 
! ng = side length of filtered image (integer). 
! 
! These quantities are related by the formula 
! 
!   nf = ng + ma - 1 
! 
! Note that this implies that ng < nf. 
! 
! The convolution filter is given by a matrix 
! 
! h(ma,ma) = filter values 
! 
! The ground truth image is assumed to be given by a function 
! defined at equally spaced points f(y(i),z(j)) where 
! 
!   y(1) < y(2) < ... < y(nf) 
!   z(1) < z(2) < ... < z(nf) 
! 
! The resulting blurred image will be given by a function g(Y(p),Z(q)) 
! where 
! 
!   Y(1) < Y(2) < ... < Y(ng) 
!   Z(1) < Z(2) < ... < Z(ng) 
! 
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! The finite convolution summation is then given by 
! 
!                                q+ma-1  p+ma-1 
!                                xxxxxx  xxxxxx 
!             x            x 
!         g(Y(p),Z(q)) =    x            x    h(Y(p)-y(i),Z(q)-z(j))*f(y(i),z(j)) 
!                                 x             x 
!          xxxxxx    xxxxxx 
!                                  j=q          i=p 
! 
! In the computation the functions f and g will be written as 
! elongated vectors x and b and the convolution filter h will be 
! represented in its matrix form. 
! 
! INPUT File Formats: 
! 
! 1. Parameter input file name is Convolve_Input.txt with format 
! 
! Line 1: ma, ng   Read as two integers (space 4dig space 4dig) 
! Line 2: ma       Read as a character string, (4 characters)  
! Line 3: Filter (Beam) matrix file name (Up to 120 character string) 
! Line 4: Blurred image vector file name (Up to 120 character string)  
! Line 5: Name of ground truth image (Up to 120 character string)  
! Put a CR/LF (ENTER) at the end of line 5 
! 
! 2. Filter input file format: 
! 
! ma rows by ma columns. Each entry in G15.6. 
! 
! 3. Ground truth file format: 
! 
! Three columns in (F8.4,F9.4,F7.2). Column 1 is the y value, column 2 
! is the z value, and column 3 is the image intensity value. 
! 
! Author: 
!   David E. Gilsinn 
!   Mathematical and Computational Sciences Division 
!   National Institute of Standards and Technology 
!   100 Bureau Drive, Stop 8910 
!   Gaithersburg, MD  20899-8910 
!   e-mail: dgilsinn@nist.gov 
! 
!********************************************************************** 
! 
 PROGRAM Convolve 
 IMPLICIT NONE 
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! 
!********************************************************************** 
! 
! 
! The object of this program is to test the convolution algorithm  
! on known bar code ground truth images. 
! 
! Parameter specifications: 
! 
 CHARACTER(*), PARAMETER :: Folder = "c:\Convolve\"  
! 
! 
! Other varaible specifications: 
! 
! x is a vector representing the ground truth image stored by columns  
! of length nf*nf. b is the filtered image stored by columns of length  
! ng*ng. 
! 
  
 INTEGER ::  p, l, k, q ,e, ma, nf, ng 
 INTEGER :: i, j, n, m, Inputstatus, Memorystatus, nout 
 REAL, DIMENSION(:,:), ALLOCATABLE :: h 
 REAL, DIMENSION(:), ALLOCATABLE ::   y1, z1, x, b 
 REAL :: xx, yy,z, sum, residnorm, maxb, minb 
 CHARACTER(120) :: BeamMatrix, GroundTruth, Beam, BeamL, GT, GTL,& 
       FilteredVect, Filtered, FilteredL, Output, & 
       OutputL,Printfile, Reconstruct, ReconstructL,& 
       PredGroundTruth, Input, InputL 
 CHARACTER(4) :: CharMa, CharMaR 
 CHARACTER(12) :: BeamFMT 
! 
! Get the parameter input file. Display input parameters.  
! 
 Input = Folder//"Convolve_Input.txt" 
 InputL = ADJUSTL(Input) 
 OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus) 
 IF (Inputstatus > 0)& 
   STOP "*** Error on opening unit 2 Input file ***" 
 READ(UNIT = 2, FMT = '(2I5)') ma, ng 
 Print *,ma,ng 
 READ(UNIT = 2, FMT = '(A4)') CharMa 
 Print *,CharMa 
 READ(UNIT = 2, FMT = '(A120)') Beam 
 Print *, Beam 
 READ(UNIT = 2, FMT = '(A120)') Filtered 
 Print *, Filtered 
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 READ(UNIT = 2, FMT = '(A120)') Reconstruct 
 Print *, Reconstruct 
 CLOSE(2) 
 BeamL = ADJUSTL(Beam) 
 FilteredL = ADJUSTL(Filtered) 
 OutputL = ADJUSTL(Output) 
 ReconstructL = ADJUSTL(Reconstruct) 
 CharMaR = ADJUSTR(CharMa) 
 BeamMatrix = Folder//BeamL 
 print *,'BeamMatrix = ',BeamMatrix 
 FilteredVect = Folder//FilteredL 
 PredGroundTruth = Folder//ReconstructL 
 BeamFMT = '('//CharMaR//'G15.6)' 
! 
! Allocate arrays 
! 
! Get lengths of ground truth image vector, n, and filtered image  
! vector, m. 
! 
 nf = ng + ma -1 
 n = nf*nf 
 m = ng*ng 
 ALLOCATE(h(ma,ma), y1(n), z1(n), x(n), b(m), STAT = Memorystatus) 
 IF (Memorystatus /= 0) STOP "*** Memory allocation error ***" 
! 
! Get the filter data as a matrix.  
! 
 OPEN(UNIT=4,FILE = BeamMatrix,STATUS = 'OLD',IOSTAT = Inputstatus) 
 IF (Inputstatus > 0 ) THEN 
  PRINT *, BeamMatrix 
  STOP "*** Error on opening unit 4 ***" 
 END IF 
 DO i = 1,ma 
  READ(UNIT = 4, FMT = BeamFMT) (h(i,j), j = 1,ma) 
 END DO 
 CLOSE(4) 
! 
! Get the ground truth image image 
! 
 OPEN(UNIT = 6, FILE = PredGroundTruth, STATUS = 'OLD') 
 i = 0 
 DO  
  READ(UNIT = 6,FMT = '(F8.4,F9.4,F7.2)',IOSTAT = Inputstatus)& 
      yy, z, xx 
  IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***" 
  IF (Inputstatus < 0) EXIT ! End of file 
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  i = i + 1 
  y1(i) = yy ! y value of data points (Not used) 
  z1(i) = z  ! z value of data points (Not used) 
  x(i) = xx 
 END DO 
 CLOSE(6) 
 Print *, 'gt image. Next integers should be equal.', i, n 
! 
! Perform the convolution algorithm 
! 
 DO p = 1,ng   ! Loop over each y block of ng elements 
  DO l = 1,ng  ! Local row number within y block 
   j = (p-1)*ng + l 
   sum = 0.0 
   DO k = 0,ma-1  ! Loop over x blocks of nf elements 
    DO q = 0,ma-1 ! Form the inner product for row j 
     e = (p + k - 1)*nf +l + q 
     sum = sum + h(ma-q,ma-k)*x(e) 
      
    END DO 
   END DO 
   b(j) =  sum  
  END DO 
 END DO 
! 
! Scale the output intensities to between 140 and 255 
! Write the output as a vector for Matlab graphics 
! 
 minb = MINVAL(b) 
 maxb = MAXVAL(b) 
  
  OPEN(UNIT = 8,FILE = FilteredVect, STATUS = 'UNKNOWN') 
 DO i = 1,m 
  b(i) = ((255.0-140.0)/(maxb-minb))*(b(i)-maxb) + 255.0  
  WRITE (UNIT = 8, FMT = '(1X, G12.6)')  b(i) 
 END DO 
 CLOSE(8) 
! 
! Deallocate memory 
! 
 DEALLOCATE(h, y1, z1, x, b ) 
! 
 
END PROGRAM Convolve 
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C3.2 Sample Input Parameter File 
 
   11  095 
  11 
spot_quarterin_10m.txt 
Quarterin_conv_Bar_1in_10m_95x95.txt 
yzint_Bar_1in_10m_data_105x105.txt 
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C4. FORTRAN 90 Deconvolution Program 
 
C4.1 Program DECONVOLVE.F90 
 
!********************************************************************** 
! 
!DECONVOLVE.F90  
! 
! This program reconstructs ground truth bar code images from 
! blurred images obtained from LADAR scans. The program 
! assumes the existence of a square array scanned data set,g, and 
! a square array, h, representing the convolution filter. The 
! program produces a best estimate array  of ground truth 
! by applying an iterative least squares algorithm to a  
! finite convolution summation. It is an inverse problem. 
! 
! Let  
! ma = side length of filter (integer), 
! nf = side length of ground truth image (integer), 
! ng = side length of filtered image (integer). 
! 
! These quantities are related by the formula 
! 
!   nf = ng + ma - 1 
! 
! Note that this implies that ng < nf. 
! 
! The convolution filter is given by a matrix 
! 
! h(ma,ma) = filter values 
! 
! The ground truth image is assumed to be given by a function 
! defined at equally spaced points f(y(i),z(j)) where 
! 
!   y(1) < y(2) < ... < y(nf) 
!   z(1) < z(2) < ... < z(nf) 
! 
! This will be the function reconstructed. 
! 
! The scanned blurred image will be given by a function g(Y(p),Z(q)) 
! where 
! 
!   Y(1) < Y(2) < ... < Y(ng) 
!   Z(1) < Z(2) < ... < Z(ng) 
! 
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! The finite convolution summation is then given by 
! 
!                              q+ma-1  p+ma-1 
!                              xxxxxx  xxxxxx 
!                      x            x 
!       g(Y(p),Z(q)) =   x             x    h(Y(p)-y(i),Z(q)-z(j))*f(y(i),z(j)) 
!                               x             x 
!                    xxxxxx  xxxxxx 
!                                 j=q        i=p 
! 
! In the computation the functions f and g will be written as 
! elongated vectors x and b and the convolution filter h will be 
! represented in its matrix form. The object is to use the filter h 
! and the scanned data g to obtain a best estimate of f. 
! 
! INPUT File Formats: 
! 
! 1. Parameter input file name is LSQR_Input.txt with format 
! 
! Line 1: ma, ng   Read as two integers, FORMAT (2I5)  
!    i.e. space 4dig space 4dig 
! Line 2: ma       Read as a character string, FORMAT (A4) 
! Line 3: Beam matrix file name  Character string FORMAT (A120) 
! Line 4: Filtered image vector file name  Character string  
!   FORMAT (A120)  (file in F6.2) 
! Line 5: Name of LSQR output file FORMAT (A120) 
! Line 6: Name of predicted ground truth image FORMAT (A120) 
! Line 7: damp - regularization parameter FORMAT (F5.3) 
! Line 8: atol - relative error in data defining A matrix.  
!     For 3 figures 0.001. FORMAT (F8.6) 
! Line 9: btol - relative error in data defining right hand b.  
!     For 3 figures 0.001. FORMAT (F8.6) 
! Put a CR/LF (ENTER) at the end of line 9 
! 
! 
! 2. Filter input file format: 
! 
! ma rows by ma columns. Each entry in G15.6. 
! 
! 3. Scanned data file format: 
! 
! Three columns in (F8.4,F9.4,F7.2). Column 1 is the y value, column 2 
! is the z value, and column 3 is the image intensity value. 
! 
! Subroutines required: 
! 
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! 1. SUBROUTINE Aprod((Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw) 
!  This subroutine computes the following: 
!    If Mode = 1, set y = y + H*x 
!   If Mode = 2, set x = x + (H^T) * y 
!    where H^T is the transpose of H formed from h.  
!  Leniw, Lenrw are the length of the working arrays Iw, Rw 
! 
! 2.SUBROUTINE LSQR( M,N,APROD,DAMP,                                      
!     1                 LENIW,LENRW,IW,RW, 
!     2                 U,V,W,X,SE, 
!     3                 ATOL,BTOL,CONLIM,ITNLIM,NOUT, 
!     4                 ISTOP,ANORM,ACOND,RNORM,ARNORM,XNORM) 
!   This subroutine performs the iterative least squares algorithm. 
!   For a description of the algorithm see 
! (a) Paige, C., Saunders, M, "LSQR: An algorithm for sparse linear 
!       equations and sparse least squares", ACM Transactions on 
!       Mathematical Software, Vol 8, No. 1, 1982, 43-71. 
!   (b) Paige, C., Saunders, M, "Algorithm 583, LSQR: Sparse linear 
!       equations and least squares problems", ACM Transactions on 
!       Mathematical Software, Vol 8, No. 2, 1982, 195-209. 
! 
!   The subroutine can be obtained from the ACM web site at 
! http://www.acm.org/calgo/contents/. It is not included in 
!   the current code publication for copyright reasons. 
! 
! Author: 
!   David E. Gilsinn 
!   Mathematical and Computational Sciences Division 
!   National Institute of Standards and Technology 
!   100 Bureau Drive, Stop 8910 
!   Gaithersburg, MD  20899-8910 
!   e-mail: dgilsinn@nist.gov 
! 
!********************************************************************** 
 MODULE LSQR_global 
!*********************************************************************** 
! 
! This module provides access to the quantities ma, nf, ng, h from 
! the subroutines. 
! 
!*********************************************************************** 
! 
 INTEGER :: ma, nf, ng  
 REAL, DIMENSION(:,:), ALLOCATABLE :: h 
! 
 END MODULE LSQR_global 
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! 
!*********************************************************************** 
! 
! The main program DECONVOLVE begins here 
! 
!*********************************************************************** 
 PROGRAM Deconvolve 
 USE LSQR_global 
 IMPLICIT NONE 
 EXTERNAL Aprod, LSQR 
!*********************************************************************** 
! 
! Parameter specifications 
! 
 INTEGER, PARAMETER :: Leniw = 1, Lenrw = 1 
 CHARACTER(*), PARAMETER :: Folder = "c:\Deconvolve\"  
! 
! Other specifications 
! 
! x is a vector representing the ground truth image stored by columns of 
! length nf*nf. b is the filtered image stored by columns of length ng*ng. 
! 
 INTEGER, DIMENSION(Leniw) :: Iw 

INTEGER :: i, j, n, m, Mode, Inputstatus, Memorystatus, nout, istop, mout(16),& 
 itnlim 

 INTEGER, DIMENSION(8) :: Val 
 REAL, DIMENSION(Lenrw) :: Rw 
 REAL :: xx, atol, btol, conlim, damp, anorm, acond, rnorm, arnorm, xnorm, y,z 
 REAL, DIMENSION(:), ALLOCATABLE :: x, b, u, v, w, se 
 CHARACTER(120) :: BeamMatrix, GroundTruth, Beam, BeamL, GT, GTL,& 

Input, InputL,& 
    FilteredVect, Filtered, FilteredL, Output, OutputL,& 
    Printfile, Reconstruct, ReconstructL,PredGroundTruth 
 CHARACTER(4) :: CharMa, CharMaR 
 CHARACTER(12) :: BeamFMT 
 CHARACTER(LEN=12) :: Real_clock(3) 
! 
! Read the parameter input file   
! 
 Input = Folder//"LSQR_Input.txt" 
 InputL = ADJUSTL(Input) 
 OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus) 
 IF (Inputstatus > 0) STOP "*** Error on opening unit 2 Input file ***" 
 READ(UNIT = 2, FMT = '(2I5)') ma, ng 
 Print *,ma,ng 
 READ(UNIT = 2, FMT = '(A4)') CharMa 
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 Print *,CharMa 
 READ(UNIT = 2, FMT = '(A120)') Beam 
 Print *, Beam 
 READ(UNIT = 2, FMT = '(A120)') Filtered 
 Print *, Filtered 
 READ(UNIT = 2, FMT = '(A120)') Output 
 Print *, Output 
 READ(UNIT = 2, FMT = '(A120)') Reconstruct 
 Print *, Reconstruct 
 READ(UNIT = 2, FMT = '(F5.3)') damp 
 Print *, damp 
 READ(UNIT = 2, FMT = '(F8.6)') atol 
 Print *, atol 
 READ(UNIT = 2, FMT = '(F8.6)') btol 
 Print *, btol 
 CLOSE(2) 
 BeamL = ADJUSTL(Beam) 
 FilteredL = ADJUSTL(Filtered) 
 OutputL = ADJUSTL(Output) 
 ReconstructL = ADJUSTL(Reconstruct) 
 CharMaR = ADJUSTR(CharMa) 
 BeamMatrix = Folder//BeamL 
 FilteredVect = Folder//FilteredL 
 Printfile = Folder//OutputL 
 PredGroundTruth = Folder//ReconstructL 
 BeamFMT = '('//CharMaR//'F15.6)' 
! 
! Allocate arrays 
! 
! Get lengths of ground truth image vector, n, and filtered image vecctor, m. 
! 
 nf = ng + ma -1 
 n = nf*nf 
 m = ng*ng 
 ALLOCATE(h(ma,ma), x(n), b(m), u(m), v(n), w(n), se(n), STAT = 
Memorystatus) 
 IF (Memorystatus /= 0) STOP "*** Memory allocation error ***" 
! 
! Get the filter data as a matrix.  
! 
 OPEN(UNIT = 4,FILE = BeamMatrix, STATUS = 'OLD', IOSTAT = Inputstatus) 
 IF (Inputstatus > 0 ) THEN 
  PRINT *, BeamMatrix 
  STOP "*** Error on opening unit 4 ***" 
 END IF 
 DO i = 1,ma 
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  READ(UNIT = 4, FMT = BeamFMT) (h(i,j), j = 1,ma) 
  Print *, (h(i,j), j = 1,ma) 
 END DO 
 CLOSE(4) 
! 
! Get the scanned data image 
! 
 OPEN(UNIT = 6, FILE = FilteredVect, STATUS = 'OLD') 
 i = 0 
 DO  
  READ(UNIT = 6,FMT = '(F8.4,F9.4,F7.2)',& 

IOSTAT = Inputstatus) y, z, xx 
  IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***" 
  IF (Inputstatus < 0) EXIT ! End of file 
  i = i + 1 
  b(i) = xx 
 END DO 
 CLOSE(6) 
 Print *, 'Filtered image', i, m 
! 
! Assign b to u for input to LSQR. Note u is overwritten. 
! 
 u = b 
! 
! Dummy values. Work arrays not used. 
! 
 Iw(1) = 0 
 Rw(1) = 0.0 
! 
! Setting up parameters for LSQR. Open an internal file 
! used by LSQR for diagnostic output and a file to save 
! the reconstructed image, x. Time calls are made for 
! diagnostic information. 
! 
! 
 nout = 7 
 OPEN(UNIT = nout, FILE = Printfile, STATUS = 'UNKNOWN') 
 OPEN(UNIT = 8, FILE = PredGroundTruth, STATUS = 'UNKNOWN') 
 conlim = 1.0e+7 
 itnlim = 10 
 CALL DATE_AND_TIME(Real_clock(1), Real_clock(2),& 
     Real_clock(3), Val) 
 Print *, Val(1), Val(2) , Val(3), Val(5), Val(6),& 
    Val(7), Val(8) 
 Call LSQR( m,n,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,x,se,& 
          atol,btol,conlim,itnlim,nout,istop,anorm,&    
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                     acond,rnorm,arnorm,xnorm ) 
 CALL DATE_AND_TIME(Real_clock(1), Real_clock(2),& 
     Real_clock(3), Val) 
 PRINT *, Val(1), Val(2) , Val(3), Val(5), Val(6),& 
    Val(7), Val(8) 
 DO i = 1,n 
  WRITE (UNIT = 8, FMT = '(1X, F12.6)')  x(i) 
 END DO 
! 
 CLOSE(nout) 
 CLOSE(8) 
! 
! Deallocate memory 
! 
 DEALLOCATE(h, x, b, u, v, w, se ) 
! 
! 
END PROGRAM Deconvolve 
!******************************************************************  
! 
 SUBROUTINE Aprod (Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw) 
 
! This version of Aprod performs a convolution of a filter matrix, h, 
! with an image  vector, x. It also applies the transpose of h to a  
! filtered image vector y. The storage of images is by columns. 
! 
! The image vector is stored in x of length n. It is generated from  
! a square image of side nf so that n = nf*nf. If f(i,j), i, j = 1,nf  
! is the image, the structure of x is as follows:  
! x(1) = f(1,1), x(2) = f(2,1), ..., x(nf) = f(nf, 1),  
! x(nf + 1) = x(1, 2), ..., x(2*nf) = x(nf, 2),...,  
! x(nf*nf) = f(nf, nf). 
! 
! The blurred image vector is stored in y of length m. It is generated  
! from a square image of side ng so that m = ng*ng. If, g(i, j),  
! i, j = 1, ng is the blurred image, the ! structure of y is as follows: 
! y(1) = g(1, 1), y(2) = g(2, 1), ..., y(ng) = g(ng, 1),  
! y(ng + 1) = g(1, 2), ..., y (2*ng) = ! g(ng, 2), ...,  
! y(ng*ng) = g(ng, ng) 
! 
! The matrix A is the sparse block Toeplitz matrix formed from the  
! filter matrix, h, of size ma x ma. In this subroutine the sparse  
! matrix is never created. Outputs are created by rows using the filter  
! matrix. This reduces storage requirements. 
! 
! Aprod performs the following function: 
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! 
!  If Mode = 1, set y = y + A*x 
! If Mode = 2, set x = x + (A^T) * y 
! 
! Iw and Rw are work arrays of length Leniw and Lenrw respectively.  
! They are not used in this version of Aprod 
! 
! Module LSQR_global contains h, ma, ng, nf 
! 
!*********************************************************************** 
 USE LSQR_global 
! 
! 
 IMPLICIT NONE 
 INTEGER :: n, m, Leniw, Lenrw, Mode 
 INTEGER :: p, l, j, k, q, e 
 REAL :: x(n), y(m), Iw(Leniw), Rw(Lenrw) 
 REAL ::  sum, yj 
! 
! 
! 
!  
! 
!************************************************************ 
! 
! Select the mode 
! 
!************************************************************ 
! 
 IF (mode == 1) THEN 
! 
!************************************************************ 
! 
! Mode = 1  -- Set y = y + A*x 
! 
!************************************************************ 
! 
 DO p = 1,ng   ! Loop over each y block of ng elements 
  DO l = 1,ng  ! Local row number within y block 
   j = (p-1)*ng + l 
   sum = 0.0 
   DO k = 0,ma-1  ! Loop over x blocks of nf elements 
    DO q = 0,ma-1 ! Form the inner product for row j 
     e = (p + k - 1)*nf +l + q 
     sum = sum + h(ma-q,ma-k)*x(e) 
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    END DO 
   END DO 
   y(j) = y(j) + sum  ! Add A*x to y for row j 
  END DO 
 END DO 
! 
 ELSE 
! 
!************************************************************** 
! 
! Mode = 2 -- Set x = x + (A^T)*y 
! 
!************************************************************** 
! 
 DO p = 1,ng 
  DO l = 1,ng 
   j = (p-1)*ng + l 
   yj = y(j) 
   DO k = 0,ma-1 
    DO q = 0,ma-1 
     e = (p+k-1)*nf + l + q 
     x(e) = x(e) + h(ma-q,ma-k)*yj 
    END DO 
   END DO 
  END DO 
 END DO 
! 
 END IF 
! 
 END SUBROUTINE Aprod 
 
C4.2 Sample Input Parameter File 
 
   11  095 
11 
Beam_10m_gaus_sig06_3x7.txt 
yzint_a_2in_10m_crop_95.txt 
LSQR_decon_out_2in_10m.txt 
decon_gaussig06_3x7_a_2in_10m_gt.txt 
0.001 
0.000001 
0.000001 
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C5. FORTRAN 90 Program to Reverse Engineer the Beam Spread 
Function 
 
C5.1 Matrix alignment 
 
In order to apply the LSQR algorithm to the reverse engineering problem the matrices 
involved need to be stored in such a way that they align properly. As in the convolution 
and deconvolution programs the scanned data, g, is stored by columns. That is 
 

(1,1)
(2,1)

( ,1)
(1,2)

( 5.1)
( , 2)

(1, )

( , )

g
g

g ng
g

g C
g ng

g ng

g ng ng

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 
 
Similarly the unknown filter matrix, H, is also stored in vector form as 
 

(1,1)
(2,1)

( ,1)
(1,2)

( 5.2)
( , 2)

(1, )

( , )

H
H

H ma
H

H C
H ma

H ma

H ma ma

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
The ground truth image is also assumed to be stored in column form as 
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2

(1) (1,1)
(2) (2,1)

( ) ( ,1)
( 1) (1,2)

( 5.3)
(2 ) ( , 2)

(( 1) ) ( , 1)

( ) ( , )

f F
f F

f nf F nf
f nf F

f C
f nf F nf

f nf nf F nf nf

f nf F nf nf

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
In order to satisfy the requirements of LSQR, the ground truth image has to be stored as a 
matrix for use in a modified version of the Aprod subroutine. The ground truth image is 
stored in a matrix of size A(ng2, ma2). 
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The storage is accomplished in the main program by the following portion of code. The 
transpose, AT, is also computed. 
 
DO cc = 0, ng-1 
 DO dd = 0, ng-1 
  DO ee = 0, ma-1 
   DO ff = 1,ma 
    k1 = cc*ng+dd+1 
    k2 = ee*ma+ff 
    k3 = (ee+cc)*nf + dd + ff 
    A(k1,k2) = F(k3) 
   END DO 
  END DO 
 END DO 
END DO 
DO cc = 1,m 
 DO dd = 1,ma2 
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  AT(dd,cc) = A(cc,dd) 
 END DO 
END DO 
 
 
C5.2 SPREAD_FUNCTION.F90 program 
 
!********************************************************************** 
! SPREAD_FUNCTION.F90 
! 
! The object of this program is to construct by a least squares  
! algorithm  with residual correction an estimate of the kernel  
! matrix that generates a given blurred image from a known ground  
! truth image. 
! 
! INPUT FILES: 
! 
! 1. Parameter input file format 
!  
! Line 1: ma, ng   Read as two integers, FORMAT 2I5 i.e. space  
!     4dig space 4dig 
! Line 2: Charma  Character form of ma 
! Line 3: Ground Truth file name  Character string (file in F6.2) 
! Line 4: maximum number of kernel update iterations (at least 1  
!     is performed) 
! Line 5: Filtered image vector file name  Character string  
!     (file in F8.4,F9.4,F7.2) 
! Line 6: Name of LSQR output file 
! Line 7: Name of predicted spread function 
! Line 8: damp - regularization parameter 
! Line 9: atol - relative error in data defining A matrix.  
!     For 3 figures 0.001. 
! Line 10: btol - relative error in data defining right hand b.  
!     For 3 figures 0.001 
! Put a CR/LF (ENTER) at the end of line 10 
! 
! 2. Filtered or scanned file image 
! 
! The file is assumed to be in three columns in (F8.4,F9.4,F7.2).  
! Column 1 is the y value, column 2 is the z value, and column 3  
! is the image intensity value. 
! 
! 3, Ground truth image 
! 
! The file is assumed to be in three columns in (F8.4,F9.4,F7.2).  
! Column 1 is the y value, column 2 is the z value, and column 3  
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! is the image intensity value. 
! 
! Subroutines Required: LSQR, Aprod, Maxnorm 
! 
! Author: 
!  David E. Gilsinn 
!  Mathematical and Computational Sciences Division 
!  National Institute of Standards and Technology 
!  100 Bureau Drive, Stop 8910 
!  Gaithersburg, MD  20899-8910 
! 
!  e-mail: dgilsinn@nist.gov 
! 
!******************************************************************** 
! 
! This module provides global access to ma, nf, ng, A, AT 
! 
! where 
! 
! ma = side length of filter,  
! nf = side length of ground truth image 
! ng = side length of filtered image, nf = ng + ma -1 
! A(ng*ng,ma*ma) - Allocatable Ground truth as a matrix 
! AT(ma*ma,ng*ng) - Allocatable transpose of ground truth 
! 
!******************************************************************** 
 MODULE LSQR_global 
!******************************************************************** 
! 
 INTEGER :: ma, nf, ng  
 REAL, DIMENSION(:,:), ALLOCATABLE :: A, AT 
! 
 END MODULE LSQR_global 
! 
!********************************************************************* 
! 
! Main Program for spread_function 
! 
!********************************************************************* 
 PROGRAM Spread_Function 
 USE LSQR_global 
 IMPLICIT NONE 
 EXTERNAL Aprod, LSQR 
! 
! 
! Parameter specifications 
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! 
 INTEGER, PARAMETER :: Leniw = 1, Lenrw = 1 
 CHARACTER(*), PARAMETER :: Folder = "c:\Spread_function\"  
!          
 character length 15 
! 
! Other specifications 
! 
! F is a vector representing the ground truth image stored by columns of 
! length nf*nf.  
! b is the filtered image stored by columns of length ng*ng. 
! u, v , w, se are working arrays for LSQR 
! h is a matrix representing the LADAR optics kernel or filter. 
! 
 REAL, DIMENSION(:), ALLOCATABLE :: F, x, b, u, v, w, se, y, tmp, e, resid 
 REAL, DIMENSION(:,:), ALLOCATABLE :: h 
 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: r1, r2 
! 
 REAL, DIMENSION(Leniw) :: Iw 
 REAL, DIMENSION(Lenrw) :: Rw 
 REAL :: xx, atol, btol, conlim, damp, anorm, acond, rnorm, arnorm, xnorm,& 

 x1, x2 
 REAL :: xmaxnorm, residnorm 
 INTEGER :: i, j, n, m, Mode, Inputstatus, Memorystatus, nout, istop, mout(16),& 
   itnlim, ma2, cc, dd, ee, ff, k1, k2, k3, k, iter, maxiter 
 CHARACTER(120) :: BeamMatrix, BeamVector,  GT, GTL, Input, InputL,& 
      FilteredVect,  & 
      Printfile, Reconstruct, 
ReconstructL,PredGroundTruth,& 
      GroundTruthL, BarCodes 
 CHARACTER(50) :: Beam, BeamL, Filtered, FilteredL, GroundTruth,& 

Output, OutputL 
 CHARACTER(4) :: CharMa, CharMaR 
 CHARACTER(12) :: BeamFMT 
 
! 
! Get the parameter input file.  
! 
 Input = Folder//"LSQR_Spread_Input.txt" 
 InputL = ADJUSTL(Input) 
 OPEN(UNIT = 2, FILE = InputL, IOSTAT = Inputstatus) 
 IF (Inputstatus > 0) STOP "*** Error on opening unit 2 Input file ***" 
 READ(UNIT = 2, FMT = '(2I5)') ma, ng 
 Print *,ma,ng 
 READ(UNIT = 2, FMT = '(A4)') CharMa 
 Print *,charma 
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 READ(UNIT = 2, FMT = '(I4)') maxiter 
 Print *, maxiter 
 READ(UNIT = 2, FMT = '(A50)') GroundTruth 
 Print *, Beam 
 READ(UNIT = 2, FMT = '(A50)') Filtered 
 Print *, Filtered 
 READ(UNIT = 2, FMT = '(A50)') Output 
 Print *, Output 
 READ(UNIT = 2, FMT = '(A50)') Beam 
 Print *, Reconstruct 
 READ(UNIT = 2, FMT = '(F5.3)') damp 
 Print *, damp 
 READ(UNIT = 2, FMT = '(F8.6)') atol 
 Print *, atol 
 READ(UNIT = 2, FMT = '(F8.6)') btol 
 Print *, btol 
 CLOSE(2) 
 BeamL = ADJUSTL(Beam) 
 BeamMatrix = Folder//'Mat_'//BeamL 
 BeamVector = Folder//'Vect_'//BeamL 
 FilteredL = ADJUSTL(Filtered) 
 OutputL = ADJUSTL(Output) 
 GroundTruthL = ADJUSTL(GroundTruth) 
 FilteredVect = Folder//FilteredL 
 Printfile = Folder//OutputL 
 BarCodes = Folder//GroundTruthL 
 CharMaR = ADJUSTR(CharMa) 
 BeamFMT = '('//CharMaR//'G15.6)' 
! 
! Allocate arrays 
! 
! Get lengths of ground truth image vector, n, and filtered image vecctor, m. 
! 
 nf = ng + ma -1 
 ma2 = ma*ma 
 n = nf*nf 
 m = ng*ng 
 Print *, nf, ma2, n, m 
 ALLOCATE(A(m,ma2), AT(ma2,m), x(ma2), b(m), u(m), v(ma2), w(ma2),& 
    se(ma2), F(n), h(ma,ma), y(m),tmp(m),e(ma2), r1(m), & 
    r2(m), resid(m), STAT = Memorystatus) 
 IF (Memorystatus /= 0) STOP "*** Memory allocation error ***" 
 Print *, 'Memory allocated' 
! 
! Read ground truth image 
! 
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 OPEN(UNIT = 8, FILE = BarCodes, STATUS = 'UNKNOWN') 
 Print *, 'Barcode file = ', BarCodes 
 i = 0 
 DO  
  READ (UNIT = 8, FMT = '(F8.4,F9.4,F7.2)', IOSTAT = Inputstatus) 
x1,x2, xx 
  IF (Inputstatus > 0) STOP "*** Input Error on Unit 8: Barcodes ***" 
  IF (Inputstatus < 0) EXIT ! End of file 
  i = i+1 
  F(i) = xx 
  END DO 
 CLOSE(8) 
 Print *, 'Barcodes', i, n 
 
! 
! Get the LADAR scanned or filtered image 
! 
 OPEN(UNIT = 6, FILE = FilteredVect, STATUS = 'UNKNOWN') 
 i = 0 
 DO  
!  READ(UNIT = 6,FMT = '(F13.6)',IOSTAT = Inputstatus)  xx 

READ (UNIT = 6, FMT = '(F8.4,F9.4,F7.2)', IOSTAT =& 
 Inputstatus)x1,x2, xx 

  IF (Inputstatus > 0) STOP "*** Input Error on Unit 6 ***" 
  IF (Inputstatus < 0) EXIT ! End of file 
  i = i + 1 
  b(i) = xx 
 END DO 
 CLOSE(6) 
 Print *, 'Filtered image', i, m 
! 
! Convert Ground truth vector F to matrices A and AT 
! 
 DO cc = 0, ng-1 
  DO dd = 0, ng-1 
   DO ee = 0, ma-1 
    DO ff = 1,ma 
     k1 = cc*ng+dd+1 
     k2 = ee*ma+ff 
     k3 = (ee+cc)*nf + dd + ff 
     A(k1,k2) = F(k3) 
    END DO 
   END DO 
  END DO 
 END DO 
 DO cc = 1,m 
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  DO dd = 1,ma2 
   AT(dd,cc) = A(cc,dd) 
  END DO 
 END DO 
! 
! Assign b to u for initial input to LSQR. Note u is overwritten. 
! 
 u = b 
! Make b double precision 
 r1 = b 
! 
! Dummy values. Work arrays not used. 
! 
 Iw(1) = 0 
 Rw(1) = 0.0 
! 
! Setting up parameters for LSQR 
! 
! 
 nout = 7 
 OPEN(UNIT = nout, FILE = Printfile, STATUS = 'UNKNOWN') 
 conlim = 1.0e+7 
 itnlim = 50 
! 
 iter = 0 
! 
! Begin the iterative refinement procedure to estimate the filter 
! 
! Determine initial kernel guess x on iteration 0  
! 
 Print *, 'Initial kernel and Residual Correction, Iteration = ', iter 
 Call LSQR( m,ma2,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,x,se,& 
         atol,btol,conlim,itnlim,nout,istop,anorm,&    
                   acond,rnorm,arnorm,xnorm) 
! 
! Compute residual 
! 
 Mode = 1 
 y = 0.0 
 Call Aprod(Mode, m,ma2,x,y,Leniw,Lenrw, Iw,Rw) 
 r2 = y ! Make y = Ax double precision 
 resid = r1 - r2 ! r = b - Ax 
 tmp = resid 
 residnorm = MAXNORM(m,tmp) 
 Print *, 'Residual maxnorm, iteration 0', residnorm 
! 
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! pass in the initial residual to start the updates 
! 
 u = resid  
!  
 DO 
 iter = iter + 1 
! 
! get the correction term and update the beam vector 
! i.e. solve Ae = r 
! 
 Call LSQR( m,ma2,Aprod,damp,Leniw,Lenrw,Iw,Rw,u,v,w,e,se,& 
         atol,btol,conlim,itnlim,nout,istop,anorm,&    
                   acond,rnorm,arnorm,xnorm) 
! 
! update kernel approximation 
! 
 x = x + e  
! 
! compute the new residual 
! 
 Mode = 1 
 y = 0.0 
 Call Aprod(Mode, m,ma2,x,y,Leniw,Lenrw, Iw,Rw) 
 r2 = y ! Make y = Ax double precision 
 resid = r1 - r2 ! r = b - Ax 
 tmp = resid 
 residnorm = MAXNORM(m,tmp) 
 Print *, 'Residual maxnorm, iteration =', iter, residnorm 
! 
! pass in the new residual to get the next update 
! 
 u = resid  
! 
! go back for the next correction 
!  
 IF (iter >= maxiter) EXIT 
! 
 END DO 
 CLOSE(nout) 
! 
 x = x - e 
! 
! Write out the final filter 
! 
 OPEN(UNIT = 4, FILE = BeamVector, STATUS = 'UNKNOWN') 
 DO i = ma2,1,-1 
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  WRITE(UNIT = 4, FMT = '(G15.6)') x(i) 
 END DO 
 CLOSE(4) 
 DO i = 1,ma 
  DO j = 1,ma 
   k = (i-1)*ma + j 
   h(ma-(j-1),ma-(i-1)) = x(k) 
  END DO 
 END DO 
 OPEN(UNIT = 4, FILE = BeamMatrix, STATUS = 'UNKNOWN') 
 DO i = 1,ma 
  WRITE(UNIT = 4, FMT = BeamFMT) (h(i,j), j = 1,ma) 
 END DO 
 CLOSE(4) 
! 
! Deallocate memory 
! 
 DEALLOCATE(A, AT, x, b, u, v, w, se, F ) 
! 
CONTAINS 
!*********************************************************************** 
! 
 FUNCTION MAXNORM(m, y) 
! 
!*********************************************************************** 
! 
! This function overwrites y 
! 
 IMPLICIT NONE 
 REAL :: MAXNORM 
 INTEGER :: m, i 
 REAL, INTENT(INOUT) :: y(m) 
 DO i = 1,m 
  y(i) = ABS(y(i)) 
 END DO 
 MAXNORM = MAXVAL(y) 
! 
END FUNCTION MAXNORM 
! 
! 
END PROGRAM Spread_Function 
! 
!***********************************************************************  
! 
 SUBROUTINE Aprod (Mode, m, n, x, y, Leniw, Lenrw, Iw, Rw) 
! 
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! 
! This version of Aprod performs a convolution of a filter matrix, h, with an image  
vector, x. 
! It also applies the transpose of h to a filtered image vector y. The storage 
! of images is by columns. 
! 
! The beam vector is stored in x of length n. It is generated from a square image 
! of side ma so that n = ma*ma. If h(i,j), i, j = 1,ma is the beam, the structure of x is as 
follows:  
! x(1) = h(ma,ma), x(2) = h(ma-1,ma), ..., x(ma) = h(1, ma), x(ma + 1) = x(ma, ma-1), ..., 
x(2*ma) = h(1, ma-1),  
! ..., x(ma*ma) = h(1, 1). 
! 
! The blurred image vector is stored in y of length m. It is generated from a square 
! image of side ng so that m = ng*ng. If, g(i, j), i, j = 1, ng is the blurred image, the  
! structure of y is as follows: 
! y(1) = g(1, 1), y(2) = g(2, 1), ..., y(ng) = g(ng, 1), y(ng + 1) = g(1, 2), ..., y (2*ng) = 
! g(ng, 2), ..., y(ng*ng) = g(ng, ng) 
! 
! The matrix A is the sparse block Toeplitz matrix formed from the ground truth image of 
! size ng*ng X ma*ma. AT is the transpose 
! 
! Aprod performs the following function: 
! 
!  If Mode = 1, set y = y + A*x 
! If Mode = 2, set x = x + (A^T) * y 
! 
! Iw and Rw are work arrays of length Leniw and Lenrw respectively. They are not 
! used in this version of Aprod 
! 
!*********************************************************************** 
! 
 USE LSQR_global 
! 
! This subroutine needs to be placed in a module to access global values for 
! h, ma, nf, ng defined below 
! 
 IMPLICIT NONE 
 INTEGER :: n, m, Leniw, Lenrw, Mode 
 INTEGER :: i, j, ng2, ma2 
 REAL :: x(n), y(m), Iw(Leniw), Rw(Lenrw) 
 REAL ::  sum 
! 
! 
 ng2 = ng*ng 
 ma2 = ma*ma 
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! 
!  
! 
!************************************************************ 
! 
! Select the mode 
! 
!************************************************************ 
! 
 IF (mode == 1) THEN 
! 
!************************************************************ 
! 
! Mode = 1  -- Set y = y + A*x 
! 
!************************************************************ 
! 
 DO i = 1,ng2 
  sum = 0.0    
  DO j = 1,ma2 
   sum = sum + A(i,j)*x(j)   
  END DO 
  y(i) = y(i) + sum 
 END DO 
! 
 ELSE 
! 
!************************************************************** 
! 
! Mode = 2 -- Set x = x + (A^T)*y 
! 
!************************************************************** 
! 
 DO i = 1,ma2 
  sum = 0.0 
  DO j = 1,ng2 
   sum = sum + AT(i,j)*y(j) 
  END DO 
  x(i) = x(i) + sum 
 END DO 
! 
 END IF 
! 
 END SUBROUTINE Aprod 
! 
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C5.3 Sample Input Parameter File 
 
   11  095 
  11 
0100 
yzint_Bar_1in_10m_data_105x105.txt 
yzint_a_1in_10m_crop_95.txt 
LSQR_output_1in_10m_95.txt 
Beam_est_a_1in_10m_11x11.txt 
0.001 
0.0001 
0.0001 
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